Process performance maps for membrane-based CO2 separation using artificial neural networks

[1]  A. Brunetti,et al.  Multi-step membrane process for biogas upgrading , 2022, Journal of Membrane Science.

[2]  Zhongyun Liu,et al.  How to Get the Best Gas Separation Membranes from State-of-the-Art Glassy Polymers , 2022, Macromolecules.

[3]  Jianwen Jiang,et al.  Machine Learning-Enabled Prediction and High-Throughput Screening of Polymer Membranes for Pervaporation Separation. , 2022, ACS applied materials & interfaces.

[4]  T. Majozi,et al.  On optimisation of N2 and CO2-selective hybrid membrane process systems for post-combustion CO2 capture from coal-fired power plants , 2021 .

[5]  M. Mazzotti,et al.  Postcombustion CO2 Capture: A Comparative Techno-Economic Assessment of Three Technologies Using a Solvent, an Adsorbent, and a Membrane , 2021, ACS Engineering Au.

[6]  M. Fetanat,et al.  Machine Learning for Advanced Design of Nanocomposite Ultrafiltration Membranes , 2021 .

[7]  Yuanhui Shen,et al.  Multi-objective optimization of ANN-based PSA model for hydrogen purification from steam-methane reforming gas , 2021 .

[8]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[9]  Gyorgy Szekely,et al.  Artificial intelligence for performance prediction of organic solvent nanofiltration membranes , 2021 .

[10]  Alexander Mitsos,et al.  Multi-scale membrane process optimization with high-fidelity ion transport models through machine learning , 2020, Journal of Membrane Science.

[11]  Alexander Mitsos,et al.  Simultaneous rational design of ion separation membranes and processes , 2020, Journal of Membrane Science.

[12]  P. Bénard,et al.  Machine learning–based optimization for hydrogen purification performance of layered bed pressure swing adsorption , 2020, International Journal of Energy Research.

[13]  Kasturi Nagesh Pai,et al.  Improving the performance of vacuum swing adsorption based CO2 capture under reduced recovery requirements , 2020 .

[14]  Zukui Li,et al.  Machine Learning-Based Multiobjective Optimization of Pressure Swing Adsorption , 2019, Industrial & Engineering Chemistry Research.

[15]  Shuo Ma,et al.  Artificial neural network based optimization for hydrogen purification performance of pressure swing adsorption , 2019, International Journal of Hydrogen Energy.

[16]  A. Dashti,et al.  Application of neural networks in membrane separation , 2018, Reviews in Chemical Engineering.

[17]  T. Merkel,et al.  CO2 Capture from Cement Plants and Steel Mills Using Membranes , 2018, Industrial & Engineering Chemistry Research.

[18]  Karl D. Amo,et al.  Extended field trials of Polaris sweep modules for carbon capture , 2017 .

[19]  T. Merkel,et al.  CO2 capture from natural gas power plants using selective exhaust gas recycle membrane designs , 2017 .

[20]  Frederico W. Tavares,et al.  Machine learning model and optimization of a PSA unit for methane-nitrogen separation , 2017, Comput. Chem. Eng..

[21]  G. Lipscomb,et al.  Membrane process optimization for carbon capture , 2017 .

[22]  Marco Mazzotti,et al.  On the optimal design of membrane-based gas separation processes , 2017 .

[23]  Sergio Mussati,et al.  Optimization of multi-stage membrane systems for CO2 capture from flue gas , 2016 .

[24]  Matthias Wessling,et al.  Optimization of membrane based nitrogen removal from natural gas , 2016 .

[25]  Matthias Wessling,et al.  Structural optimization of membrane-based biogas upgrading processes , 2015 .

[26]  Richard W. Baker,et al.  Gas Separation Membrane Materials: A Perspective , 2014 .

[27]  Jennifer Wilcox,et al.  Consideration of a nitrogen-selective membrane for postcombustion carbon capture through process modeling and optimization , 2014 .

[28]  Richard W. Baker,et al.  Pressure ratio and its impact on membrane gas separation processes , 2014 .

[29]  Enrico Drioli,et al.  Engineering evaluation of CO2 separation by membrane gas separation systems , 2014 .

[30]  Xiangping Zhang,et al.  Post-combustion Carbon Capture with a Gas Separation Membrane: Parametric Study, Capture Cost, and Exergy Analysis , 2013 .

[31]  Mashallah Rezakazemi,et al.  Gas permeation through H2-selective mixed matrix membranes: Experimental and neural network modeling , 2013 .

[32]  Mohammad Rostamizadeh,et al.  Predicting gas flux in silicalite-1 zeolite membrane using artificial neural networks , 2012 .

[33]  Mohamed Khayet,et al.  Artificial neural network modeling and optimization of desalination by air gap membrane distillation , 2012 .

[34]  T. Merkel,et al.  Carbon dioxide capture with membranes at an IGCC power plant , 2012 .

[35]  Nikolett Sipöcz,et al.  The use of Artificial Neural Network models for CO2 capture plants , 2011 .

[36]  Enrico Drioli,et al.  H2 Separation From H2/N2 and H2/CO Mixtures with Co-Polyimide Hollow Fiber Module , 2010 .

[37]  Haiqing Lin,et al.  Power plant post-combustion carbon dioxide capture: An opportunity for membranes , 2010 .

[38]  Li Zhao,et al.  Multi-stage gas separation membrane processes used in post-combustion capture: Energetic and economic analyses , 2010 .

[39]  Enrico Drioli,et al.  Membrane technologies for CO2 separation , 2010 .

[40]  Dongxiao Yang,et al.  Potential of Two-Stage Membrane System with Recycle Stream for CO2 Capture from Postcombustion Gas , 2009 .

[41]  Ludger Blum,et al.  A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture , 2008 .

[42]  L. Robeson,et al.  The upper bound revisited , 2008 .

[43]  Toraj Mohammadi,et al.  Evaluation of a mathematical model using experimental data and artificial neural network for prediction of gas separation , 2008 .

[44]  Akbar Shahsavand,et al.  Neural networks modeling of hollow fiber membrane processes , 2007 .

[45]  Roda Bounaceur,et al.  Membrane processes for post-combustion carbon dioxide capture: A parametric study , 2006 .

[46]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[47]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[48]  Benny D. Freeman,et al.  Modeling multicomponent gas separation using hollow‐fiber membrane contactors , 1998 .

[49]  J. G. Wijmans,et al.  The solution-diffusion model: a review , 1995 .

[50]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[51]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[52]  M. F. Møller A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning , 1990 .

[53]  R. Lippmann,et al.  An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.

[54]  C. Pan Gas separation by high‐flux, asymmetric hollow‐fiber membrane , 1986 .

[55]  C. Pan Gas separation by permeators with high‐flux asymmetric membranes , 1983 .

[56]  H. W. Habgood,et al.  Gas separation by permeation Part I. Calculation methods and parametric analysis , 1978 .

[57]  Waldo A. Steiner,et al.  Separation of Gases by Fractional Permeation through Membranes , 1950 .

[58]  Andy J. Keane,et al.  Multi-Objective Optimization Using Surrogates , 2010 .

[59]  Tom Fawcett,et al.  ROC Graphs: Notes and Practical Considerations for Researchers , 2007 .

[60]  Zhang Lin,et al.  Global optimization of absorption chiller system by genetic algorithm and neural network , 2002 .

[61]  Y. Shindo,et al.  Calculation methods for multicomponent gas separation by permeation , 1985 .