Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles

In this work we theoretically and experimentally analyze the resonant behavior of individual 3 × 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and to interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations.

[1]  Junxi Zhang,et al.  Nanostructures for surface plasmons , 2012 .

[2]  J. Joannopoulos,et al.  Temporal coupled-mode theory for the Fano resonance in optical resonators. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  J. Dionne,et al.  Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances. , 2011, Nano letters.

[4]  Thomas Wriedt,et al.  The Mie Theory , 2012 .

[5]  A. Geim,et al.  Nanofabricated media with negative permeability at visible frequencies , 2005, Nature.

[6]  Shanhui Fan,et al.  Temporal Coupled-Mode Theory for Fano Resonance in Light Scattering by a Single Obstacle † , 2009, 0909.3323.

[7]  Dirk C. Keene Acknowledgements , 1975 .

[8]  N Engheta,et al.  Negative effective permeability and left-handed materials at optical frequencies. , 2004, Optics express.

[9]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[10]  Na Liu,et al.  Magnetic plasmon formation and propagation in artificial aromatic molecules. , 2012, Nano letters.

[11]  G. Molina-Terriza,et al.  Dual and anti-dual modes in dielectric spheres. , 2013, Optics express.

[12]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[13]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[14]  Adrian Doicu,et al.  Light Scattering by Systems of Particles: Null-Field Method with Discrete Sources: Theory and Programs , 2014 .

[15]  H. Haus,et al.  Coupled-mode theory , 1991, Proc. IEEE.

[16]  D. Mackowski,et al.  Calculation of total cross sections of multiple-sphere clusters , 1994 .

[17]  Elodie Boisselier,et al.  Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. , 2009, Chemical Society reviews.

[18]  D. Mackowski,et al.  The Extension of Mie Theory to Multiple Spheres , 2012 .

[19]  Artificial molecules , 1996 .

[20]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[21]  P. Nordlander,et al.  Designing and deconstructing the Fano lineshape in plasmonic nanoclusters. , 2012, Nano letters.

[22]  P. Nussenzveig,et al.  Classical analog of electromagnetically induced transparency , 2001, quant-ph/0107061.

[23]  Alexandre V. Tishchenko,et al.  Analysis of plasmon resonances on a metal particle , 2014 .

[24]  Mostafa A. El-Sayed,et al.  Why Gold Nanoparticles Are More Precious than Pretty Gold: Noble Metal Surface Plasmon Resonance and Its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes , 2006 .

[25]  P. Schuck,et al.  Nonperturbative visualization of nanoscale plasmonic field distributions via photon localization microscopy. , 2011, Physical review letters.

[26]  N. Destouches,et al.  Coupled Mode Modeling To Interpret Hybrid Modes and Fano Resonances in Plasmonic Systems , 2015 .

[27]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[28]  Valery Shklover,et al.  Negative Refractive Index Materials , 2006 .

[29]  Arkady M. Satanin,et al.  Classical analogy of Fano resonances , 2006 .

[30]  Harry A. Atwater,et al.  Plasmonics—A Route to Nanoscale Optical Devices (Advanced Materials, 2001, 13, 1501) , 2003 .

[31]  Steven G. Johnson,et al.  Theoretical criteria for scattering dark states in nanostructured particles. , 2014, Nano letters.

[32]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[33]  Giovanni Miano,et al.  Theory of coupled plasmon modes and Fano-like resonances in subwavelength metal structures , 2013 .

[34]  A. Roberts,et al.  The dark side of plasmonics. , 2013, Nano letters.

[35]  Y. Kivshar,et al.  Revisiting the physics of Fano resonances for nanoparticle oligomers , 2013, 1310.2983.

[36]  Albert Polman,et al.  Programmable nanolithography with plasmon nanoparticle arrays. , 2007, Nano letters.

[37]  Y L Xu,et al.  Electromagnetic scattering by an aggregate of spheres. , 1995, Applied optics.

[38]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[39]  P. Schuck,et al.  Manipulating nano-scale light fields with the Asymmetric Bowtie nano-Colorsorter , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[40]  David R. Smith,et al.  Shape effects in plasmon resonance of individual colloidal silver nanoparticles , 2002 .

[41]  M. Frimmer,et al.  Signature of a Fano resonance in a plasmonic metamolecule's local density of optical states. , 2011, Physical review letters.

[42]  Nicolas Bonod,et al.  Singular analysis of Fano resonances in plasmonic nanostructures , 2013 .

[43]  Nader Engheta,et al.  Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles , 2008, 0805.2329.

[44]  Mode-balancing far-field control of light localization in nanoantennas , 2010, 1003.5841.

[45]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[46]  Andrea Alu,et al.  A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance , 2013, CLEO: 2013.

[47]  C. Noguez Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment , 2007 .

[48]  P. Nordlander,et al.  Mechanisms of Fano resonances in coupled plasmonic systems. , 2013, ACS nano.

[49]  Peter Nordlander,et al.  Fano resonances in plasmonic nanoparticle aggregates. , 2009, The journal of physical chemistry. A.

[50]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[51]  Peter Nordlander,et al.  Plasmonic nanostructures: artificial molecules. , 2007, Accounts of chemical research.

[52]  N. Destouches,et al.  Modeling and Interpretation of Hybridization in Coupled Plasmonic Systems , 2016 .

[53]  Alexandre V. Tishchenko,et al.  Singular Representation of Plasmon Resonance Modes to Optimize the Near- and Far-Field Properties of Metal Nanoparticles , 2015, Plasmonics.

[54]  D. Mackowski,et al.  Analysis of radiative scattering for multiple sphere configurations , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[55]  Andrea Alù,et al.  The quest for optical magnetism: from split-ring resonators to plasmonic nanoparticles and nanoclusters , 2014 .

[56]  N. Bonod,et al.  Tailoring the chirality of light emission with spherical Si-based antennas. , 2016, Nanoscale.

[57]  M. El-Sayed,et al.  Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. , 2006, Chemical Society reviews.

[58]  Albert Polman,et al.  Tunable Nanoscale Localization of Energy on Plasmon Particle Arrays , 2007 .

[59]  Duncan Graham,et al.  Surface-enhanced Raman scattering , 1998 .