Optimal Unateness Testers for Real-Valued Functions: Adaptivity Helps

We study the problem of testing unateness of functions f:{0,1}^d -> R. We give an O(d/\epsilon . log(d/\epsilon))-query nonadaptive tester and an O(d/\epsilon)-query adaptive tester and show that both testers are optimal for a fixed distance parameter \epsilon. Previously known unateness testers worked only for Boolean functions, and their query complexity had worse dependence on the dimension both for the adaptive and the nonadaptive case. Moreover, no lower bounds for testing unateness were known. We generalize our results to obtain optimal unateness testers for functions f:[n]^d -> R. Our results establish that adaptivity helps with testing unateness of real-valued functions on domains of the form {0,1}^d and, more generally, [n]^d. This stands in contrast to the situation for monotonicity testing where there is no adaptivity gap for functions f:[n]^d -> R.

[1]  Venkatesh Medabalimi Property Testing Lower Bounds via Communication Complexity , 2012 .

[2]  Xi Chen,et al.  Testing unateness nearly optimally , 2019, STOC.

[3]  Jinyu Xie,et al.  Beyond Talagrand functions: new lower bounds for testing monotonicity and unateness , 2017, STOC.

[4]  Ronitt Rubinfeld,et al.  Robust Characterizations of Polynomials with Applications to Program Testing , 1996, SIAM J. Comput..

[5]  Dana Ron,et al.  Property testing and its connection to learning and approximation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[6]  Dana Ron,et al.  Testing Monotonicity , 2000, Comb..

[7]  Sofya Raskhodnikova,et al.  Approximating the distance to monotonicity of Boolean functions , 2019, Electron. Colloquium Comput. Complex..

[8]  Subhash Khot,et al.  An Õ(n) Queries Adaptive Tester for Unateness , 2016, Electron. Colloquium Comput. Complex..

[9]  Dana Ron,et al.  On proximity oblivious testing , 2009, STOC '09.

[10]  Eric Blais,et al.  A polynomial lower bound for testing monotonicity , 2016, STOC.

[11]  Bernard Chazelle,et al.  Information theory in property testing and monotonicity testing in higher dimension , 2005, Inf. Comput..

[12]  Eyal Kushilevitz,et al.  Testing Monotonicity over Graph Products , 2004, ICALP.

[13]  Seshadhri Comandur,et al.  An Optimal Lower Bound for Monotonicity Testing over Hypergrids , 2013, APPROX-RANDOM.

[14]  Eyal Kushilevitz,et al.  Distribution-Free Property Testing , 2003, RANDOM-APPROX.

[15]  Sofya Raskhodnikova,et al.  Testing if an Array Is Sorted , 2016, Encyclopedia of Algorithms.

[16]  Ronitt Rubinfeld,et al.  Fast approximate PCPs for multidimensional bin-packing problems , 2005, Inf. Comput..

[17]  Seshadhri Comandur,et al.  Adaptive Boolean Monotonicity Testing in Total Influence Time , 2018, Electron. Colloquium Comput. Complex..

[18]  Seshadhri Comandur,et al.  A Õ(n) Non-Adaptive Tester for Unateness , 2016, Electron. Colloquium Comput. Complex..

[19]  Subhash Khot,et al.  On Monotonicity Testing and Boolean Isoperimetric Type Theorems , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[20]  Sofya Raskhodnikova,et al.  Testing Unateness of Real-Valued Functions , 2016, ArXiv.

[21]  Mihir Bellare,et al.  Linearity testing in characteristic two , 1996, IEEE Trans. Inf. Theory.

[22]  Sofya Raskhodnikova,et al.  A Lower Bound for Nonadaptive, One-Sided Error Testing of Unateness of Boolean Functions over the Hypercube , 2017, Electron. Colloquium Comput. Complex..

[23]  Ronitt Rubinfeld,et al.  Linearity Testing/Testing Hadamard Codes , 2008, Encyclopedia of Algorithms.

[24]  Bernard Chazelle,et al.  Information theory in property testing and monotonicity testing in higher dimension , 2006, Inf. Comput..

[25]  Sofya Raskhodnikova,et al.  Testing the Lipschitz Property over Product Distributions with Applications to Data Privacy , 2013, TCC.

[26]  Andrew Chi-Chih Yao,et al.  Probabilistic computations: Toward a unified measure of complexity , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[27]  Manuel Blum,et al.  Self-testing/correcting with applications to numerical problems , 1990, STOC '90.

[28]  Sofya Raskhodnikova,et al.  Lower Bounds for Testing Properties of Functions over Hypergrid Domains , 2014, 2014 IEEE 29th Conference on Computational Complexity (CCC).

[29]  Sofya Raskhodnikova,et al.  Testing Lipschitz Functions on Hypergrid Domains , 2012, Algorithmica.

[30]  Xi Chen,et al.  Boolean Unateness Testing with Õ(n^{3/4}) Adaptive Queries , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[31]  Sofya Raskhodnikova,et al.  Testing and Reconstruction of Lipschitz Functions with Applications to Data Privacy , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[32]  Kyomin Jung,et al.  Transitive-Closure Spanners , 2008, SIAM J. Comput..

[33]  Sofya Raskhodnikova Transitive-Closure Spanners: A Survey , 2010, Property Testing.

[34]  Seshadhri Comandur,et al.  Optimal bounds for monotonicity and lipschitz testing over hypercubes and hypergrids , 2013, STOC '13.

[35]  Simon Litsyn,et al.  Breaking the ε-Soundness Bound of the Linearity Test over GF(2) , 2007, Electron. Colloquium Comput. Complex..

[36]  Sourav Chakraborty,et al.  Monotonicity testing and shortest-path routing on the cube , 2010, Comb..

[37]  Rocco A. Servedio,et al.  New Algorithms and Lower Bounds for Monotonicity Testing , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[38]  Ronitt Rubinfeld,et al.  Monotonicity testing over general poset domains , 2002, STOC '02.

[39]  GoldreichOded,et al.  Property testing and its connection to learning and approximation , 1998 .

[40]  Eric Blais,et al.  Quantum Algorithm for Monotonicity Testing on the Hypercube , 2015, Theory Comput..

[41]  Eric Blais,et al.  Testing Submodularity and Other Properties of Valuation Functions , 2017, ITCS.

[42]  Deeparnab Chakrabarty Monotonicity Testing , 2016, Encyclopedia of Algorithms.

[43]  Joshua Brody,et al.  Property Testing Lower Bounds via Communication Complexity , 2011, computational complexity.

[44]  Ronitt Rubinfeld,et al.  On Testing Convexity and Submodularity , 2002, RANDOM.

[45]  Ronitt Rubinfeld,et al.  Spot-checkers , 1998, STOC '98.

[46]  Sofya Raskhodnikova,et al.  Learning pseudo-Boolean k-DNF and submodular functions , 2013, SODA.

[47]  Seshadhri Comandur,et al.  An o(n) Monotonicity Tester for Boolean Functions over the Hypercube , 2016, SIAM J. Comput..

[48]  Aleksandrs Belovs Adaptive Lower Bound for Testing Monotonicity on the Line , 2018, APPROX-RANDOM.

[49]  Rocco A. Servedio,et al.  Boolean Function Monotonicity Testing Requires (Almost) n 1/2 Non-adaptive Queries , 2014, STOC.

[50]  Eldar Fischer On the strength of comparisons in property testing , 2004, Inf. Comput..

[51]  Sofya Raskhodnikova,et al.  XX : 3 1 . 1 Parameters and Properties Studied in this Work , 2017 .

[52]  Amit Levi,et al.  Lower Bounds for Tolerant Junta and Unateness Testing via Rejection Sampling of Graphs , 2018, Electron. Colloquium Comput. Complex..

[53]  Sofya Raskhodnikova,et al.  A Note on Adaptivity in Testing Properties of Bounded Degree Graphs , 2006, Electron. Colloquium Comput. Complex..

[54]  Seshadhri Comandur,et al.  A o(n) monotonicity tester for boolean functions over the hypercube , 2013, STOC '13.

[55]  Seshadhri Comandur,et al.  A o(d) · polylog n Monotonicity Tester for Boolean Functions over the Hypergrid [n]d , 2018, SODA.

[56]  Dana Ron,et al.  On Disjoint Chains of Subsets , 2001, J. Comb. Theory, Ser. A.

[57]  Sofya Raskhodnikova,et al.  Erasure-Resilient Property Testing , 2016, ICALP.

[58]  Seshadhri Comandur,et al.  Property Testing on Product Distributions: Optimal Testers for Bounded Derivative Properties , 2015, SODA.

[59]  Dana Ron,et al.  Improved Testing Algorithms for Monotonicity , 1999, Electron. Colloquium Comput. Complex..

[60]  Ronitt Rubinfeld,et al.  Fast Approximate PCPs for Multidimensional Bin-Packing Problems , 1999, RANDOM-APPROX.

[61]  Ronitt Rubinfeld,et al.  Non‐Abelian homomorphism testing, and distributions close to their self‐convolutions , 2008, Random Struct. Algorithms.