Discrete-time Normal Form for Left Invertibility Problem

This paper deals with the design of quadratic and higher order normal forms for the left invertibility problem. The linearly observable case and one-dimensional linearly unobservable case are investigated. The interest of such a study in the design of a delayed discrete-time observer is examined. The example of the Burgers map with unknown input is treated and a delayed discrete-time observer is designed. Finally, some simulated results are commented.

[1]  Pavol Brunovský,et al.  A classification of linear controllable systems , 1970, Kybernetika.

[2]  J. Massey,et al.  Invertibility of linear time-invariant dynamical systems , 1969 .

[3]  Issa Amadou Tall,et al.  Normal forms for nonlinear discrete time control systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[4]  Torsten Lilge Nonlinear discrete-time observers for synchronization problems , 1999 .

[5]  D. Boutat,et al.  Quadratic observability normal form , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[6]  L. Silverman Inversion of multivariable linear systems , 1969 .

[7]  Timo Hartmann,et al.  Chaos: A Program Collection for the PC , 1994 .

[8]  Jean-Pierre Barbot,et al.  Sliding Mode Control In Engineering , 2002 .

[9]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[10]  Henk Nijmeijer,et al.  Nonlinear discrete-Time Synchronization via Extended observers , 2001, Int. J. Bifurc. Chaos.

[11]  Wei Kang,et al.  Bifurcation and Normal Form of Nonlinear Control Systems, Part II , 1998 .

[12]  Salvatore Monaco,et al.  Controller and Observer Normal Forms in Discrete-Time , 2008 .

[13]  Driss Boutat,et al.  Poincaré Normal Form for a Class of Driftless Systems in a One-Dimensional Submanifold Neighborhood , 2002, Math. Control. Signals Syst..

[14]  Mohamed Djemai,et al.  Cryptography by discrete-time hyperchaotic systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[15]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[16]  M. Djemai,et al.  An example of nonlinear discrete-time synchronization of chaotic systems for secure communication , 2003, 2003 European Control Conference (ECC).

[17]  Kurt Schlacher,et al.  An introduction to algebraic discrete-time linear parametric identification with a concrete application , 2008 .

[18]  A. Krener Approximate linearization by state feedback and coordinate change , 1984 .

[19]  A. J. Krener Feedback linearization , 1998 .

[20]  Vahid Johari Majd,et al.  An alternative way to test the criteria ensuring the existence of discrete-time normal form , 2007, Syst. Control. Lett..

[21]  Issa Amadou Tall,et al.  Normal Forms and Invariants of Nonlinear Single-Input Systems with Noncontrollable Linearization , 2001 .

[22]  Driss Boutat,et al.  OBSERVABILITY BIFURCATION VERSUS OBSERVING BIFURCATIONS , 2002 .

[23]  Sahjendra N. Singh A modified algorithm for invertibility in nonlinear systems , 1981 .

[24]  Arthur J. Krener,et al.  The controlled center dynamics of discrete time control bifurcations , 2004, Syst. Control. Lett..