Data-driven uncertainty quantification of structural systems via B-spline expansion
暂无分享,去创建一个
Vasilis K. Dertimanis | Eleni Chatzi | E. Chatzi | V. Dertimanis | M. Spiridonakos | M. D. Spiridonakos
[1] Hans-Paul Schwefel,et al. Evolution strategies – A comprehensive introduction , 2002, Natural Computing.
[2] Data-driven polynomial chaos basis estimation , 2015 .
[3] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[4] Nicolas Monmarché,et al. On how Pachycondyla apicalis ants suggest a new search algorithm , 2000, Future Gener. Comput. Syst..
[5] Jorge Nocedal,et al. An interior algorithm for nonlinear optimization that combines line search and trust region steps , 2006, Math. Program..
[6] Axel Ruhe,et al. Algorithms for separable nonlinear least squares problems , 1980 .
[7] Bruno Sudret,et al. Surrogate modeling for stochastic dynamical systems by combining nonlinear autoregressive with exogenous input models and polynomial chaos expansions , 2016 .
[8] Bruno Sudret,et al. Efficient computation of global sensitivity indices using sparse polynomial chaos expansions , 2010, Reliab. Eng. Syst. Saf..
[9] B. Sudret,et al. Surrogate modelling for stochastic dynamical systems by combining NARX models and polynomial chaos expansions , 2016, 1604.07627.
[10] Nicolas Molinari,et al. Bounded optimal knots for regression splines , 2004, Comput. Stat. Data Anal..
[11] Thomas C. M. Lee,et al. On algorithms for ordinary least squares regression spline fitting: A comparative study , 2002 .
[12] Gene H. Golub,et al. The differentiation of pseudo-inverses and non-linear least squares problems whose variables separate , 1972, Milestones in Matrix Computation.
[13] B. Sudret,et al. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .
[14] Hubert Schwetlick,et al. Least squares approximation by splines with free knots , 1995 .
[15] George E. Karniadakis,et al. Beyond Wiener–Askey Expansions: Handling Arbitrary PDFs , 2006, J. Sci. Comput..
[16] Long Quan,et al. Diversity enhanced and local search accelerated gravitational search algorithm for data fitting with B-splines , 2013, Engineering with Computers.
[17] G. I. Schuëller,et al. Benchmark Study on Reliability Estimation in Higher Dimensions of Structural Systems – An Overview , 2007 .
[18] V. K. Jayaraman,et al. Ant colony framework for optimal design and scheduling of batch plants , 2000 .
[19] Mary J. Lindstrom,et al. Penalized Estimation of Free-Knot Splines , 1999 .
[20] Giovanni Righini,et al. Heuristics from Nature for Hard Combinatorial Optimization Problems , 1996 .
[21] Andrés Iglesias,et al. Efficient particle swarm optimization approach for data fitting with free knot B-splines , 2011, Comput. Aided Des..
[22] K. A. Cliffe,et al. Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..
[23] Jonathan E. Cooper,et al. Modeling composite wing aeroelastic behavior with uncertain damage severity and material properties , 2012 .
[24] Eleni Chatzi,et al. Polynomial chaos expansion models for the monitoring of structures under operational variability , 2016 .
[25] Vasilis K. Dertimanis,et al. Hybrid evolutionary identification of output-errorstate-space models , 2014 .
[26] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[27] Bruno Sudret,et al. Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach , 2008 .
[28] Philip Smith,et al. Knot selection for least-squares and penalized splines , 2013 .
[29] Vasilis K. Dertimanis,et al. Design of a Novel Hybrid Optimization Algorithm , 2009, ICINCO-ICSO.
[30] Franz S. Hover,et al. Application of polynomial chaos in stability and control , 2006, Autom..
[31] G. Golub,et al. Separable nonlinear least squares: the variable projection method and its applications , 2003 .
[32] Juan M. Caicedo,et al. Practical guidelines for the natural excitation technique (NExT) and the eigensystem realization algorithm (ERA) for modal identification using ambient vibration , 2011 .
[33] Bruno Sudret,et al. Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..
[34] Eleni Chatzi,et al. Metamodeling of uncertain structural systems based on wavelet transform decomposition , 2013, SOCO 2013.
[35] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[36] D. Xiu,et al. Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos , 2002 .
[37] Vasilis K. Dertimanis. Output–error state–space identification of vibrating structures using evolution strategies: a benchmark study , 2014 .
[38] Soroosh Sorooshian,et al. Evolution of ensemble data assimilation for uncertainty quantification using the particle filter‐Markov chain Monte Carlo method , 2012 .
[39] R. Ghanem,et al. Uncertainty propagation using Wiener-Haar expansions , 2004 .
[40] Sergey Oladyshkin,et al. Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion , 2012, Reliab. Eng. Syst. Saf..
[41] Frances Y. Kuo,et al. Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.
[42] Linda H. Zhao,et al. Free‐knot polynomial splines with confidence intervals , 2003 .
[43] Stochastic Finite Element Analysis of Uncertain Nonlinear Trusses under Random Loadings , 1992 .
[44] Jennifer Pittman,et al. Adaptive Splines and Genetic Algorithms , 2000 .
[45] Hubert Schwetlick,et al. Constrained approximation by splines with free knots , 1997 .
[46] Marco Dorigo,et al. Ant algorithms and stigmergy , 2000, Future Gener. Comput. Syst..