Rhizobia Unique Plant Growth Promoting Rhizobacteria: A Review

Rhizobia are well known nitrogen fixing bacteria. On the basis of generation time rhizobia is classify into slow (Bradyrhizobium) and fast growing Rhizobia (Rhizobium). Chemical fertilizer reduces the soil fertility and biofertilizer improve soil ecology. Rhizobia have some unique quality to fix nitrogen, produce plant growth hormones, Siderophore production, HCN production and good colonizer. Such activity directly or indirectly increases the plant growth and productivity. Co-inoculation of Rhizobia with other microorganism can also improve the plant growth and productivity. Biologiocal control activity enhances its important as PGPR. Few Rhizobia can tolerate few extend of salt, acidic environment, and low water content in soil. All above activity clearly indicate that Rhizobia are unique plant growth promoting rhizobacteria.

[1]  M. Mahmood,et al.  Effects of rhizobia and plant growth promoting bacteria inoculation on germination and seedling vigor of lowland rice , 2012 .

[2]  G. Gupta,et al.  Biofertilizers: A novel tool for agriculture , 2009 .

[3]  M. Shoko,et al.  The potential of reducing nitrogen fertilizer rates using a soyabean-sugarcane production system in the South Eastern Lowveld of Zimbabwe , 2007 .

[4]  P. Pandey,et al.  Rhizobia as a biological control agent against soil borne plant pathogenic fungi. , 2003, Indian journal of experimental biology.

[5]  A. Puteh,et al.  Potential for enhancement of root growth and nodulation of soybean co-inoculated with Azospirillum and Bradyrhizobium in laboratory systems , 2001 .

[6]  G. U. Okereke,et al.  Response of introduced Bradyrhizobium strains infectinga promiscuous soybean cultivar , 2000 .

[7]  N. Peters,et al.  A positive role for rhizobitoxine in Rhizobium-legume symbiosis , 1999 .

[8]  C. Blanco,et al.  Disaccharides as a New Class of Nonaccumulated Osmoprotectants for Sinorhizobium meliloti , 1999, Applied and Environmental Microbiology.

[9]  F. Noya,et al.  Fluorescent Pseudomonas spp. as biocontrol agents against forage legume root pathogenic fungi , 1998 .

[10]  Y. Bashan INOCULANTS OF PLANT GROWTH-PROMOTING BACTERIA FOR USE IN AGRICULTURE , 1998 .

[11]  J. Lynch,et al.  Composted sawdust as a carrierfor Bradyrhizobium, Rhizobium and Azospirillum in crop inoculation , 1998 .

[12]  N. Dashti,et al.  Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions , 1998, Plant and Soil.

[13]  M. Dilworth,et al.  Rhizobium leguminosarum bv. viciae produces a novel cyclic trihydroxamate siderophore, vicibactin. , 1998, Microbiology.

[14]  W. Chen,et al.  Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. , 1997 .

[15]  C. Nautiyal Rhizosphere competence of Pseudomonas sp. NBRI9926 and Rhizobium sp. NBRI9513 involved in the suppression of chickpea (Cicer arietinum L.) pathogenic fungi , 1997 .

[16]  L. Overbeek,et al.  Fate and activity of microorganisms introduced into soil. , 1997 .

[17]  R. Pedraza,et al.  Cell colonization and infection thread formation in sugar cane roots by Acetobacter diazotrophicus , 1997 .

[18]  J. Kigel,et al.  Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L.) , 1997 .

[19]  F. Hashem,et al.  Survival of Bradyrhizobium sp. (Arachis) on fungicide-treated peanut seed in relationship to plant growth and yield , 1997 .

[20]  H. Antoun,et al.  Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli , 1996, Plant and Soil.

[21]  J. Peter,et al.  Diversity and phylogeny of rhizobia , 1996 .

[22]  M. Hynes,et al.  Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. , 1996, Canadian journal of microbiology.

[23]  B. Vanlauwe,et al.  Evaluation of symbiotic properties and nitrogen contribution of mucuna to maize grown in the derived savanna of West Africa , 1996, Plant and Soil.

[24]  A. Filali-Maltouf,et al.  Characterization of rhizobia isolated from Carob tree (Ceratonia siliqua) , 1996 .

[25]  M. Bueno,et al.  Peanut rhizobia under salt stress: role of trehalose accumulation in strain ATCC 51466 , 1995 .

[26]  Z. Cui,et al.  Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. , 1995, International journal of systematic bacteriology.

[27]  J. Ladha,et al.  Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production? , 1995, Plant and Soil.

[28]  M. Trinick,et al.  Formation of nodular structures on the non-legumes Brassica napus, B. campestris, B. juncea and Arabidopsis thaliana with Bradyrhizobium and Rhizobium isolated from Parasponia spp. or legumes grown in tropical soils , 1995, Plant and Soil.

[29]  G. Höflich,et al.  Survival of plant growth promoting rhizosphere bacteria in the rhizosphere of different crops and migration to non-inoculated plants under field conditions in north-east Germany , 1995 .

[30]  M. Wood,et al.  Nodulation and N2 fixation by soybean inoculated with salt-tolerant rhizobia or salt-sensitive bradyrhizobia in saline soil , 1995 .

[31]  P. Olsen,et al.  Co-culture of Rhizobium meliloti and a phosphorus-solubilizing fungus (Penicillium bilaii) in sterile peat , 1995 .

[32]  Arief Indrasumunar,et al.  Population dynamics of soybean root-nodule bacteria in latosol soil used for upland and lowland rice/soybean cropping systems in West Java, Indonesia , 1995 .

[33]  J. Brockwell,et al.  Recent advances in inoculant technology and prospects for the future , 1995 .

[34]  E. Schröder,et al.  In vitro evaluation of bacteria for the biological control ofMacrophomina phaseolina , 1995, World journal of microbiology & biotechnology.

[35]  H. Antoun,et al.  Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria , 1995, Applied and environmental microbiology.

[36]  O. D. Smith,et al.  Growth Response of Peanut to Field Inoculation with Endomycorrhizal Fungi, Bradyrhizobium, and Supplemental Phosphorus in Texas1 , 1994 .

[37]  F. Boogerd,et al.  Siderophore production byBradyrhizobium spp. strains nodulating groundnut , 1994, Plant and Soil.

[38]  J. Michiels,et al.  Effects of Temperature Stress on Bean-Nodulating Rhizobium Strains , 1994, Applied and environmental microbiology.

[39]  R. Mellor,et al.  Perception of Rhizobium nodulation factors by tomato cells and inactivation by root chitinases. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Hoque Bradyrhizobium technology: a promising substitute for chemical nitrogen fertilizer in Bangladesh agriculture , 1993, Plant and Soil.

[41]  P. K. Chakrabartty,et al.  Solubilization of inorganic phosphate byRhizobium , 1993, Folia Microbiologica.

[42]  A. Ghaffar,et al.  Use of Rhizobia in the Control of Root Rot Diseases of Sunflower, Okra, Soybean and Mungbean , 1993 .

[43]  W. Hunter Ethylene Production by Root Nodules and Effect of Ethylene on Nodulation in Glycine max , 1993, Applied and environmental microbiology.

[44]  J. Buyer,et al.  Isolation and Structure of Rhizobactin 1021, a Siderophore from the Alfalfa Symbiont Rhizobium meliloti 1021 , 1993 .

[45]  H. Marschner,et al.  Crop residue application increases nitrogen fixation and dry matter production in groundnut (Arachis hypogaea L.) grown on an acid sandy soil in Niger, West Africa , 1993, Plant and Soil.

[46]  J. Kloepper,et al.  A review of issues related to measuring colonization of plant roots by bacteria , 1992 .

[47]  B. Kishinevsky,et al.  Effect of high root temperature on Bradyrhizobium-peanut symbiosis , 1992, Plant and Soil.

[48]  R. S. Smith Legume inoculant formulation and application , 1992 .

[49]  T. Devine,et al.  Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp.nov. , 1992 .

[50]  G. H. Elkan Taxonomy of the rhizobia , 1992 .

[51]  J. Kloepper,et al.  Physiological characterization of opine-utilizing rhizobacteria for traits related to plant growth-promoting activity , 1991, Plant and Soil.

[52]  M. Daft,et al.  Effects of Glomus clarum and water stress on growth and nitrogen fixation in two genotypes of groundnut , 1991 .

[53]  J. Thies,et al.  Modeling Symbiotic Performance of Introduced Rhizobia in the Field by Use of Indices of Indigenous Population Size and Nitrogen Status of the Soil , 1991, Applied and environmental microbiology.

[54]  J. Dixon,et al.  Minerals in soil environments , 1990 .

[55]  P. Sprent,et al.  Nitrogen Fixing Organisms: Pure and Applied Aspects , 1990 .

[56]  M. Guerinot,et al.  Citrate as a siderophore in Bradyrhizobium japonicum , 1990, Journal of bacteriology.

[57]  W. Chao Antagonistic activity of Rhizobium spp. against beneficial and plant pathogenic fungi , 1990 .

[58]  Caixian Tang,et al.  The role of iron in nodulation and nitrogen fixation in Lupinus angustifolius L , 1990 .

[59]  T. George,et al.  Influence of elevation and applied nitrogen on rhizosphere colonization and competition for nodule occupancy by different rhizobial strains on field-grown soybean and common bean , 1990 .

[60]  R. Ehwald,et al.  Immobilization of yeast cells in plant cell wall frameworks , 1989, Applied Microbiology and Biotechnology.

[61]  H. Bienfait Prevention of stress in iron metabolism of plants , 1989 .

[62]  K. Kersters,et al.  Bergey's Manual of Systematic Bacteriology , 1989 .

[63]  A. Skorupska,et al.  Siderophore production and utilization byRhizobium trifolii , 1989, Biology of Metals.

[64]  S. B. Desai,et al.  Isolation and partial characterization of phenolate siderophore from Rhizobium leguminosarum IARI 102 , 1988 .

[65]  T. Devine,et al.  DNA homology group and the identity of bradyrhizobial strains producing rhizobitoxine-induced foliar chlorosis on soybean , 1988 .

[66]  M. Alexander,et al.  Co-inoculation with antibiotic-producing bacteria to increase colonization and nodulation by rhizobia , 1988, Plant and Soil.

[67]  H. Antoun,et al.  Characteristics of rhizobia isolated from three legumes indigenous to the Canadian high arctic:Astragalus alpinus, Oxytropis maydelliana, andOxytropis arctobia , 1987, Plant and Soil.

[68]  S. Sivaramakrishnan,et al.  Detection and assay of siderophores in cowpea rhizobia (Bradyrhizobium) using radioactive Fe (59Fe) , 1987 .

[69]  A. Hussain,et al.  Response of maize (Zea mays) to Azotobacter inoculation under fertilized and unfertilized conditions , 1987, Biology and Fertility of Soils.

[70]  D. Rudulier,et al.  Salt tolerance in Rhizobium: A possible role for betaines , 1986 .

[71]  D. C. Jordan,et al.  Iron requirement of Rhizobium leguminosarum and secretion of anthranilic acid during growth on an iron-deficient medium. , 1986, Archives of biochemistry and biophysics.

[72]  R. Copeman,et al.  Effect of Rhizobium spp. on Fusarium solani f. sp. phaseoli , 1986 .

[73]  C. T. Wheeler,et al.  Nitrogen Fixation in Plants , 1986 .

[74]  Y. Okon,et al.  Effect of Azospirillum inoculation on nitrogen fixation and growth of several winter legumes , 1986 .

[75]  P. Nambiar Response of groundnut (Arachis hypogaea L) toRhizobium inoculation in the field: Problems and prospects , 1985 .

[76]  B. Rolfe,et al.  Influence of Azospirillum Strains on the Nodulation of Clovers by Rhizobium Strains , 1985, Applied and environmental microbiology.

[77]  V. Modi,et al.  Isolation and characterisation of catechol-like siderophore from cowpea Rhizobium RA-1 , 1985, Archives of Microbiology.

[78]  J. Shoolery,et al.  Rhizobactin, a structurally novel siderophore from Rhizobium meliloti , 1985 .

[79]  N. Malajczuk,et al.  Interactions between Phytophthora cinnamomi and Rhizobium isolates , 1984 .

[80]  M. Alexander,et al.  Mineral Soils as Carriers for Rhizobium Inoculants , 1984, Applied and environmental microbiology.

[81]  S. Sparrow,et al.  Survival of Rhizobium phaseoli in Six Carrier Materials1 , 1983 .

[82]  N. Boonkerd,et al.  Survival of Cowpea Rhizobia in Soil as Affected by Soil Temperature and Moisture , 1982, Applied and environmental microbiology.

[83]  A. G. Wollum,et al.  Effects of Soil Water on Rhizobium japonicum Infection, Nitrogen Accumulation, and Yield in Bragg Soybeans1 , 1981 .

[84]  P. Graham,et al.  Survival of Rhizobium phaseoli in Contact with Chemical Seed Protectants1 , 1980 .

[85]  D. Thurlow,et al.  Evaluation of Commercial Soybean Inoculants by Various Techniques1 , 1980 .

[86]  M. H. Gaskins,et al.  Plant Growth Substances Produced by Azospirillum brasilense and Their Effect on the Growth of Pearl Millet (Pennisetum americanum L.) , 1979, Applied and environmental microbiology.

[87]  R. Crichton,et al.  Isolation and characterization of phytoferritin from pea (Pisum sativum) and Lentil (Lens esculenta). , 1978, The Biochemical journal.

[88]  J. Tu Protection of soybean from severe Phytophthora root rot by Rhizobium , 1978 .

[89]  R. Hardy,et al.  Nitrogen fixation in bacteria and higher plants. , 1975, Molecular biology, biochemistry, and biophysics.

[90]  R. E. Buchanan,et al.  Bergey's Manual of Determinative Bacteriology. , 1975 .

[91]  G. Ham,et al.  Evaluation of Rhizobium japonicum Inoculants in Soils Containing Naturalized Populations of Rhizobia1 , 1971 .

[92]  J. K. Wilson OVER FIVE HUNDRED REASONS FOR ABANDONING THE CROSS‐INOCULATION GROUPS OF THE LEGUMES , 1944 .

[93]  E. B. Fred,et al.  Root nodule bacteria and leguminous plants. , 1933 .

[94]  A. Bano,et al.  Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). , 2008 .

[95]  A. Stoecker,et al.  Economic Effects of Environmental Taxation on Chemical Fertilizers , 2006 .

[96]  R. Lalande,et al.  Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.) , 2004, Plant and Soil.

[97]  M. Dilworth,et al.  Siderophore and organic acid production in root nodule bacteria , 2004, Archives of Microbiology.

[98]  R. Dubey,et al.  ISOLATION OF PLANT GROWTHPROMOTING STRAINS OF BRADYRHIZOBIUM (ARACHIS) SP. WITH BIOCONTROL POTENTIAL AGAINST MACROPHOMINA PHASEOLINA CAUSING CHARCOAL ROT OF PEANUT , 2003 .

[99]  E. P. Rao,et al.  Perspectives of soil fertility management with a focus on fertilizer use for crop productivity , 2002 .

[100]  T. Roy,et al.  Microbiological and electron microscopic studies of urea treated Rhizobium sp. cells. , 2000, Acta microbiologica Polonica.

[101]  N. Arora,et al.  Isolation of both fast and slow growing rhizobia effectively nodulating a medicinal legume, Mucuna pruriens. , 2000 .

[102]  M. Sevilla,et al.  Nitrogen Fixation with Non-Legumes , 1998, Developments in Plant and Soil Sciences.

[103]  M. Bueno,et al.  Changes in the cellular content of trehalose in four peanut rhizobia strains cultured under hypersalinity , 1996 .

[104]  T. Boller,et al.  Ethylene Responsiveness of Soybean Cultivars Characterized by Leaf Senescence, Chitinase Induction and Nodulation , 1996 .

[105]  I. Tikhonovich,et al.  Nitrogen Fixation: Fundamentals and Applications , 1995, Current Plant Science and Biotechnology in Agriculture.

[106]  R. S. Smith Inoculant Formulations and Applications to Meet Changing Needs , 1995 .

[107]  L. Overbeek,et al.  Bacterial Responses to Soil Stimuli , 1993 .

[108]  S. Kjelleberg Starvation in Bacteria , 1993, Springer US.

[109]  F. Mwaura,et al.  Induction of Bacterial Nitrogenase activity in a Maize-diazotroph Association. In;Nitrogen Fixation with nonlegumes (Hegazi, N., Fayez & Monib eds) American University in Cairo: Cairo, Egypt. , 1993 .

[110]  J. Loper,et al.  Factors influencing siderophore-mediated biocontrol activity of rhizosphere Pseudomonas spp. , 1991 .

[111]  P. Sprent,et al.  Nitrogen Fixing Organisms , 1990 .

[112]  K. Syōno,et al.  Rhizobium Attachment and Curling in Asparagus, Rice and Oat Plants , 1990 .

[113]  D. le Rudulier,et al.  Uptake of glycine betaine and its analogues by bacteroids of Rhizobium meliloti. , 1990, Journal of general microbiology.

[114]  S. Pararajasingham,et al.  NITROGENASE ACTIVITY OF COWPEA (Vigna unguiculata (L') Walp') DURING AND AFTER DROUGHT STRESS , 1990 .

[115]  R. Abaidoo,et al.  Host-Bradyrhizobium relationships and nitrogen-fixation in the Bambarra groundnut (Voandzeia subterranea (L.) Thouars nom. cons.) , 1990 .

[116]  M. Wood,et al.  Salt effects on survival and multiplication of chickpea and soybean rhizobia , 1990 .

[117]  J. O. Rawlings,et al.  Symbiotic Relationship between Bradyrhizobium Strains and Peanut , 1989 .

[118]  A. Bjourson,et al.  Nodulation of Lotus pedunculatus in acid rooting solution by fast- and slow-growing rhizobia , 1985 .

[119]  P. Bottomley,et al.  Soil acidity and the composition of an indigenous population of Rhizobium tripolii in nodules of different cultivars of Trifolium subterraneum L. , 1984 .

[120]  C. M. Bray Nitrogen metabolism in plants , 1983 .

[121]  R. Kremer,et al.  Field Evaluation of Selected Rhizobium in an Improved Legume Inoculant1 , 1983 .

[122]  D. C. Jordan NOTES: Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a Genus of Slow-Growing, Root Nodule Bacteria from Leguminous Plants , 1982 .

[123]  J. Neilands Microbial envelope proteins related to iron. , 1982, Annual review of microbiology.

[124]  J. Neilands Microbial iron compounds. , 1981, Annual review of biochemistry.

[125]  W. Lindsay Chemical equilibria in soils , 1979 .

[126]  H. Zahran,et al.  Salt tolerance of Rhizobium species in broth cultures. , 1979, Zeitschrift fur allgemeine Mikrobiologie.

[127]  A. B. Frank,et al.  Ueber die Pilzsymbiose der Leguminosen , 1890 .

[128]  H. Hellriegel,et al.  Untersuchungen über die Stickstoffnahrung der Gramineen und Leguminosen , 1888 .