Random polytopes in a convex polytope, independence of shape, and concentration of vertices

Write ~.-"d for the set of all convex bodies (convex compact sets with nonempty interior) in ~d. Define o@g~l d as the set of those K E 5 b "~d with vol K = 1. Fix K E .~g-i d and choose points X l , . . . , x~ E K randomly, independently, and according to the uniform distribution on K. Then K,~ = c o n v ( x l , . . . , xn} is a random polytope in K . Write E(K, n) for the expectation of the random variable v o l ( K \ K n ) . E(K, n) shows how well K,~ approximates K in volume on the average. Groemer [Grl] proved that, among all convex bodies K E o@g~l d, the ellipsoids are approximated worst, i.e.

[1]  H. T. Kung,et al.  On the Average Number of Maxima in a Set of Vectors and Applications , 1978, JACM.

[2]  Rex A. Dwyer,et al.  On the convex hull of random points in a polytope , 1988, Journal of Applied Probability.

[3]  Ravi Kannan,et al.  Convex Hull of Randomly Chosen Points from A Polytope , 1987, Parallel Algorithms and Architectures.

[4]  A. Giannopoulos On the mean value of the area of a random polygon in a plane convex body , 1992 .

[5]  Rolf Schneider,et al.  Random approximation of convex sets * , 1988 .

[6]  W. Feller,et al.  An Introduction to Probability Theory and its Applications, Vol. II , 1967 .

[7]  A. Rényi,et al.  über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .

[8]  A. M. Macbeath,et al.  A THEOREM ON NON-HOMOGENEOUS LATTICES' , 1952 .

[9]  Luc Devroye A Note on Finding Convex Hulls Via Maximal Vectors , 1980, Inf. Process. Lett..

[10]  Fernando Affentranger Aproximación aleatoria de cuerpos convexos , 1992 .

[11]  B. Efron The convex hull of a random set of points , 1965 .

[12]  Christian Buchta,et al.  A note on the volume of a random polytope in a tetrahedron , 1986 .

[13]  Fernando Affentranger,et al.  On the convex hull of uniform random points in a simpled-polytope , 1991, Discret. Comput. Geom..

[14]  Imre Bárány,et al.  Intrinsic volumes andf-vectors of random polytopes , 1989 .

[15]  Fernando Affentranger,et al.  The expected volume of a random polytope in a ball * , 1988 .

[16]  Barthold F. Van Wel The convex hull of a uniform sample from the interior of a simple d -polytope , 1989 .

[17]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[18]  David G. Larman,et al.  Volumes of a Random Polytope in a Convex Set , 1990, Applied Geometry And Discrete Mathematics.

[19]  Kenneth Falconer,et al.  Unsolved Problems In Geometry , 1991 .

[20]  C. Buchta,et al.  Zufallspolygone in konvexen Vielecken. , 1984 .

[21]  Imre Bárány,et al.  CONVEX-BODIES, ECONOMIC CAP COVERINGS, RANDOM POLYTOPES , 1988 .

[22]  C. A. Rogers,et al.  The directions of the line segments and of the r -dimensional balls on the boundary of a convex body in Euclidean space , 1970 .

[23]  H. Groemer,et al.  On the mean value of the volume of a random polytope in a convex set , 1974 .

[24]  Richard E. Pfiefer,et al.  The Historical Development of J. J. Sylvester's Four Point Problem , 1989 .

[25]  W. Reed,et al.  Random points in a simplex , 1974 .

[26]  C. Schütt The convex floating body and polyhedral approximation , 1991 .