The use of space by animals as a function of accessibility and preference

Heterogeneous usage of space by individual animals or animal populations is partly due to their preference for particular resources that are, themselves, heterogeneously distributed. When all points in the environment are equally accessible, a direct relationship between usage and preference can be assumed. However, when accessibility is restricted, spatial variations in usage can no longer be attributed entirely to preference. In such cases, it is necessary to control for the effects of accessibility on observed usage before conclusions about preference can be drawn. In this paper, I develop a modelling framework that treats the use of space by animals as a joint function of preference and accessibility. I specify a null version of the framework that assumes no preference and propose that its output can be used to control for the effect of accessibility on the observed, spatial distribution of usage. I briefly discuss how the framework can subsequently be used to provide insights about the animals’ preference for different resources and types of movement, and to predict usage in areas where no usage data exist. I explore the properties of the methodology using data from a population of simulated animals and present the first results of its application to a sub-set of the British population of grey seals (Halichoerus grypus).

[1]  C. McCulloch,et al.  Analyzing Discrete Movement Data as a Correlated Random Walk , 1989 .

[2]  M. Gorman,et al.  The impact of land-use change on voles and raptors , 1993 .

[3]  D. Claussen,et al.  THREAD TRAILING OF TURTLES : METHODS FOR EVALUATING SPATIAL MOVEMENTS AND PATHWAY STRUCTURE , 1998 .

[4]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[5]  Andy South,et al.  Extrapolating from individual movement behaviour to population spacing patterns in a ranging mammal , 1999 .

[6]  Hans Scharstein Paths of Carabid Beetles Walking in the Absence of Orienting Stimuli and the Time Structure of their Motor Output , 1990 .

[7]  S. Holbrook,et al.  THE COMBINED EFFECTS OF PREDATION RISK AND FOOD REWARD ON PATCH SELECTION , 1988 .

[8]  Thorsten Wiegand,et al.  Finding the Missing Link between Landscape Structure and Population Dynamics: A Spatially Explicit Perspective , 1999, The American Naturalist.

[9]  Alan R. Johnson,et al.  Diffusion in Fractcal Landscapes: Simulations and Experimental Studies of Tenebrionid Beetle Movements , 1992 .

[10]  Paul R. Moorcroft,et al.  Home range analysis using a mechanistic home range model , 1999 .

[11]  Paul G. Blackwell,et al.  Random diffusion models for animal movement , 1997 .

[12]  Nils Chr. Stenseth,et al.  The biology of lemmings , 1993 .

[13]  S. Ferrier,et al.  An evaluation of alternative algorithms for fitting species distribution models using logistic regression , 2000 .

[14]  K D Farnsworth,et al.  How Do Grazers Achieve Their Distribution? A Continuum of Models from Random Diffusion to the Ideal Free Distribution Using Biased Random Walks , 1999, The American Naturalist.

[15]  Stephen P. Ellner,et al.  Web Relocation and Habitat Selection in Desert Widow Spider , 1993 .

[16]  Bryan F. J. Manly,et al.  Assessing habitat selection when availability changes , 1996 .

[17]  John A. Wiens,et al.  Fractal patterns of insect movement in microlandscape mosaics , 1995 .

[18]  Jason Matthiopoulos,et al.  Areal coverage of the ocean floor by the deep-sea elasipodid holothurian Oneirophanta mutabilis: estimates using systematic, random and directional search strategy simulations , 1997 .

[19]  R. Powell,et al.  An Evaluation of the Accuracy of Kernel Density Estimators for Home Range Analysis , 1996 .

[20]  SIMON BENHAMOU,et al.  Path integration in dogs , 1998, Animal Behaviour.

[21]  L. M. Marsh,et al.  The form and consequences of random walk movement models , 1988 .

[22]  P. Holland,et al.  Discrete Multivariate Analysis. , 1976 .

[23]  S. T. Buckland,et al.  An autologistic model for the spatial distribution of wildlife , 1996 .

[24]  Kevin S. McKelvey,et al.  Estimation of habitat selection for central-place foraging animals. , 1999 .

[25]  J Uchmański,et al.  Individual-based modelling in ecology: what makes the difference? , 1996, Trends in ecology & evolution.

[26]  M. Boyce,et al.  Relating populations to habitats using resource selection functions. , 1999, Trends in ecology & evolution.

[27]  J. Ollason Behavioural consequences of hunting by expectation: A simulation study of foraging tactics , 1983 .

[28]  A. Mysterud,et al.  Relating populations to habitats. , 1999, Trends in ecology & evolution.

[29]  Antoine Guisan,et al.  Predictive habitat distribution models in ecology , 2000 .

[30]  Bernie J. McConnell,et al.  Foraging ecology of southern elephant seals in relation to the bathymetry and productivity of the Southern Ocean , 1992, Antarctic Science.

[31]  S. Levin Lectu re Notes in Biomathematics , 1983 .

[32]  J. Krebs,et al.  INDIVIDUAL DECISIONS AND THE DISTRIBUTION OF PREDATORS IN A PATCHY ENVIRONMENT , 1988 .

[33]  D. Häder,et al.  TRACKING OF FLAGELLATES BY IMAGE ANALYSIS , 1990 .

[34]  J. Ollason Learning to forage--optimally? , 1980, Theoretical population biology.

[35]  Dag Ø. Hjermann,et al.  Analyzing habitat selection in animals without well-defined home ranges , 2000 .

[36]  M A Fedak,et al.  Cardiac responses of grey seals during diving at sea. , 1993, The Journal of experimental biology.

[37]  J. Brickmann B. Mandelbrot: The Fractal Geometry of Nature, Freeman and Co., San Francisco 1982. 460 Seiten, Preis: £ 22,75. , 1985 .

[38]  Falk Huettmann,et al.  Seabird colony locations and environmental determination of seabird distribution : a spatially explicit breeding seabird model for the Northwest Atlantic , 2001 .

[39]  B. Manly,et al.  Resource selection by animals: statistical design and analysis for field studies. , 1994 .

[40]  Bernie J. McConnell,et al.  MAMVIS: A Marine Mammal Behaviour Visualization System , 1996, Comput. Animat. Virtual Worlds.

[41]  Simon Benhamou,et al.  Optimal sinuosity in central place foraging movements , 1991, Animal Behaviour.

[42]  Peter Turchin,et al.  Fractal Analyses of Animal Movement: A Critique , 1996 .

[43]  Mario A. Natiello,et al.  THE INFLUENCE OF MOVEMENT AND RESTING BEHAVIOR ON THE RANGE OF THREE CARABID BEETLES , 1998 .

[44]  Octávio S. Paulo,et al.  Modelling wildlife distributions: Logistic Multiple Regression vs Overlap Analysis , 1999 .

[45]  P. Turchin Quantitative analysis of movement : measuring and modeling population redistribution in animals and plants , 1998 .

[46]  W. J. Bell Searching Behaviour: The Behavioural Ecology of Finding Resources , 1991 .

[47]  B. Hölldobler Canopy orientation: a new kind of orientation in ants. , 1980, Science.

[48]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[49]  Simon Benhamou,et al.  A model for place navigation in mammals , 1995 .

[50]  Jacoby Carter,et al.  MOAB : a spatially explicit, individual-based expert system for creating animal foraging models , 1999 .

[51]  John M. Fryxell,et al.  Space use by beavers in relation to resource abundance , 1992 .

[52]  K. Rennolls,et al.  A HOME RANGE MODEL INCORPORATING BIOLOGICAL ATTRACTION POINTS , 1983 .

[53]  William A. Link,et al.  Correcting for Overdispersion in Tests of Prey Selectivity , 1994 .

[54]  Arild O. Gautestad,et al.  Physical and biological mechanisms in animal movement processes , 1993 .

[55]  James A. Baker,et al.  Distribution Patterns of Raptors in Relation to Density of Meadow Voles , 1981 .

[56]  F. Bigler,et al.  An individual-based model of Trichogramma foraging behaviour : parameter estimation for single females , 1996 .

[57]  P. J. Wright,et al.  A spatial comparison of common guillemots and sandeels in Scottish waters , 1997 .

[58]  J. Roese,et al.  Habitat heterogeneity and foraging efficiency: an individual-based model , 1991 .

[59]  S. Benhamou,et al.  Spatial analysis of animals' movements using a correlated random walk model* , 1988 .

[60]  N. Hill,et al.  A biased random walk model for the trajectories of swimming micro-organisms. , 1997, Journal of theoretical biology.

[61]  R. D. Harkness,et al.  Central place foraging by an ant (Cataglyphis bicolor Fab.): a model of searching , 1985, Animal Behaviour.

[62]  H. Stanley,et al.  Optimizing the success of random searches , 1999, Nature.

[63]  Bernie J. McConnell,et al.  Movements and foraging areas of grey seals in the North Sea , 1999 .

[64]  G. O. Batzli,et al.  The influence of high quality food on habitat use by arctic microtine rodents , 1991 .

[65]  David A. Elston,et al.  Empirical models for the spatial distribution of wildlife , 1993 .

[66]  Gary C. White,et al.  Analysis of Wildlife Radio-Tracking Data , 1990 .

[67]  Peter Turchin,et al.  Translating Foraging Movements in Heterogeneous Environments into the Spatial Distribution of Foragers , 1991 .

[68]  Simon Benhamou,et al.  Distinguishing between elementary orientation mechanisms by means of path analysis , 1992, Animal Behaviour.

[69]  A. Ōkubo,et al.  Di?usion and ecological problems: mathematical models , 1980 .

[70]  O P Judson,et al.  The rise of the individual-based model in ecology. , 1994, Trends in ecology & evolution.