Enantioselective Recognition of Mandelic Acid Based on Hemoglobin and Multiwall Carbon Nanotubes Modified Electrode

[1]  Woo-Sik Kim,et al.  Development of real-time sensitive chiral analysis technique using quartz crystal analyzer , 2012 .

[2]  Yingzi Fu,et al.  Chiral Recognition of Penicillamine Enantiomers Based on DNA‐MWNT Complex Modified Electrode , 2012 .

[3]  Yingzi Fu,et al.  A new strategy for chiral recognition of amino acids. , 2012, Chemical communications.

[4]  H. Gu,et al.  Immobilization, direct electrochemistry and electrocatalysis of hemoglobin on colloidal silver nanoparticles-chitosan film , 2010 .

[5]  M. Rincón,et al.  Sensors Based on Electrochemically Deposited Titania Studied by AFM and EIS Techniques , 2010 .

[6]  Jong Seung Kim,et al.  Chiral gold nanoparticle-based electrochemical sensor for enantioselective recognition of 3,4-dihydroxyphenylalanine. , 2010, Chemical communications.

[7]  S. Ng,et al.  A novel strategy for rapid real-time chiral discrimination of enantiomers using serum albumin functionalized QCM biosensor. , 2009, Biosensors & bioelectronics.

[8]  Wei Zhang,et al.  An ionic liquid supported CeO2 nanoshuttles-carbon nanotubes composite as a platform for impedance DNA hybridization sensing. , 2009, Biosensors & bioelectronics.

[9]  N. Hu,et al.  Assembly of layer-by-layer films of heme proteins and single-walled carbon nanotubes: electrochemistry and electrocatalysis , 2005, Analytical and bioanalytical chemistry.

[10]  S. Sortino,et al.  Binding of a chiral drug to a protein: an investigation of the 2-(3-benzoylphenyl)propionic acid/bovine serum albumin system by circular dichroism and fluorescence. , 2005, Physical chemistry chemical physics : PCCP.

[11]  André L. A. Santos,et al.  A disposable electrochemical sensor for the rapid determination of levodopa. , 2005, Journal of pharmaceutical and biomedical analysis.

[12]  David Avnir,et al.  Chiral electrochemical recognition by very thin molecularly imprinted sol-gel films. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[13]  S. Louro,et al.  Quenching of the intrinsic fluorescence of bovine serum albumin by chlorpromazine and hemin. , 2004, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[14]  Pradeep Kumar,et al.  An asymmetric dihydroxylation route to (S)-oxybutynin , 2003 .

[15]  L. Pu,et al.  Fluorescent sensors for the enantioselective recognition of mandelic acid: signal amplification by dendritic branching. , 2002, Journal of the American Chemical Society.

[16]  Y. Sadakane,et al.  Protein domain of chicken α1-acid glycoprotein is responsible for chiral recognition , 2002 .

[17]  S. Pleus,et al.  Poly(pyrroles) containing chiral side chains: effect of substituents on the chiral recognition in the doped as well as in the undoped state of the polymer film , 2001 .

[18]  L. Wang,et al.  Direct electrochemistry of hemoglobin in layer-by-layer films with poly(vinyl sulfonate) grown on pyrolytic graphite electrodes. , 2001, Bioelectrochemistry.

[19]  E. Yashima,et al.  Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation. , 2001, Journal of chromatography. A.

[20]  W. Lindner,et al.  Separation of enantiomers: needs, challenges, perspectives. , 2001, Journal of chromatography. A.

[21]  Juan Bisquert,et al.  Impedance of constant phase element (CPE)-blocked diffusion in film electrodes , 1998 .

[22]  S. Fanali Identification of chiral drug isomers by capillary electrophoresis. , 1996, Journal of chromatography. A.

[23]  E. Yashima,et al.  Chiral Discrimination on Polysaccharides Derivatives , 1995 .

[24]  J. Haginaka,et al.  The absence of chiral recognition ability in ovomucoid: ovoglycoprotein-bonded HPLC stationary phases for chiral recognition. , 1995, Analytical chemistry.

[25]  P. Saltman,et al.  Thiols, gold-thiols, zinc-thiols and the redox state of hemoglobin. , 1993, Biochimica et biophysica acta.

[26]  J. Ross Macdonald,et al.  A flexible procedure for analyzing impedance spectroscopy results: Description and illustrations , 1987 .

[27]  L. Casella,et al.  Coordination modes of histidine. 10. Iron(III) tyrosinate models. Synthesis and spectroscopic and stereochemical studies of iron(III) complexes of N-salicylidene-L-amino acids , 1987 .

[28]  Max F. Perutz,et al.  Hemoglobin as a receptor of drugs and peptides: x-ray studies of the stereochemistry of binding , 1986 .

[29]  H. Gray,et al.  Bis(dipicolinate) complexes of cobalt(III) and iron(II) as new probes of metalloprotein electron-transfer reactivity. Analysis of reactions involving cytochrome c and cytochrome c551 , 1979 .

[30]  E. Laviron,et al.  Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry , 1974 .

[31]  E. M. Holt,et al.  Preparation and properties of iron(3)-amino acid complexes. Iron(3)-alanine, a possible ferritin analog. , 1974, Journal of the American Chemical Society.

[32]  R. Jones Some Factors Influencing the Ultraviolet Absorption Spectra of Polynuclear Aromatic Compounds. I. A General Survey1 , 1945 .

[33]  R. S. Mulliken Electronic Structures of Polyatomic Molecules and Valence. II. Quantum Theory of the Double Bond , 1932 .

[34]  R. S. Mulliken Electronic Structures of Polyatomic Molecules and Valence. II. General Considerations , 1932 .

[35]  Jianbin Zheng,et al.  Direct Electrochemistry and Electrocatalysis of Hemoglobin Immobilized on the Functionalized Graphene-Carbon Nanotube Composite Film , 2012 .

[36]  E. Takahashi,et al.  R-(−)-mandelic acid production from racemic mandelic acids by Pseudomonas polycolor with asymmetric degrading activity , 1995 .

[37]  J. K. Yandell,et al.  Oxidation of heme proteins by copper(II) complexes. Rates and mechanism of the copper catalysed autoxidation of cytochrome c, myoglobin and hemoglobin , 1979 .

[38]  M. Worwood,et al.  Iron in biochemistry and medicine. , 1974 .