Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework

A critical disadvantage of primal-dual interior-point methods compared to dual interior-point methods for large scale semidefinite programs (SDPs) has been that the primal positive semidefinite matrix variable becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidefinite matrix completion, this article proposes a general method of exploiting the aggregate sparsity pattern over all data matrices to overcome this disadvantage. Our method is used in two ways. One is a conversion of a sparse SDP having a large scale positive semidefinite matrix variable into an SDP having multiple but smaller positive semidefinite matrix variables to which we can effectively apply any interior-point method for SDPs employing a standard block-diagonal matrix data structure. The other way is an incorporation of our method into primal-dual interior-point methods which we can apply directly to a given SDP. In Part II of this article, we will investigate an implementation of such a primal-dual interior-point method based on positive definite matrix completion, and report some numerical results.

[1]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[2]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[3]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[4]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[5]  Charles R. Johnson,et al.  Positive definite completions of partial Hermitian matrices , 1984 .

[6]  J. G. Lewis,et al.  A fast algorithm for reordering sparse matrices for parallel factorization , 1989 .

[7]  C. Richard Johnson,et al.  Matrix Completion Problems: A Survey , 1990 .

[8]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[9]  M. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Nu , 1994 .

[10]  Masakazu Kojima,et al.  SDPA (SemiDefinite Programming Algorithm) User's Manual Version 6.2.0 , 1995 .

[11]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[12]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[13]  Blair J R S,et al.  Introduction to Chordal Graphs and Clique Trees, in Graph Theory and Sparse Matrix Computation , 1997 .

[14]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[15]  Monique Laurent,et al.  Cuts, matrix completions and graph rigidity , 1997, Math. Program..

[16]  Masakazu Kojima,et al.  Exploiting sparsity in primal-dual interior-point methods for semidefinite programming , 1997, Math. Program..

[17]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..

[18]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[19]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[20]  C. Helmberg,et al.  Solving quadratic (0,1)-problems by semidefinite programs and cutting planes , 1998 .

[21]  Yin Zhang,et al.  A unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinite programming , 1998, Math. Program..

[22]  Kim-Chuan Toh,et al.  On the Nesterov-Todd Direction in Semidefinite Programming , 1998, SIAM J. Optim..

[23]  Brian Borchers CSDP 2.3 user's guide , 1999 .

[24]  Masakazu Kojima,et al.  Search directions in the SDP and the monotone SDLCP: generalization and inexact computation , 1999, Math. Program..

[25]  N. Katoh,et al.  Semi-definite programming for topology optimization of trusses under multiple eigenvalue constraints , 1999 .

[26]  Masakazu Kojima,et al.  Numerical Evaluation of SDPA (Semidefinite Programming Algorithm) , 2000 .

[27]  Xiong Zhang,et al.  Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization , 1999, SIAM J. Optim..

[28]  R. Saigal,et al.  An Incomplete Cholesky Factorization for Dense Symmetric Positive Definite Matrices , 2000 .

[29]  Katsuki Fujisawa,et al.  Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results , 2003, Math. Program..