Parallel solution in time of ODEs: some achievements and perspectives

The parallel solution of initial value problems for ordinary differential equations (ODE-IVPs) has received much interest from many researchers in the past years. In general, the possibility of using parallel computing in this setting concerns different aspects of the numerical solution of ODEs, depending on the parallel platform to be used and/or the complexity of the problem to be solved. In particular, in this paper we examine possible extensions of a parallel method previously proposed in the mid-nineties [P. Amodio, L. Brugnano, Parallel implementation of block boundary value methods for ODEs, J. Comput. Appl. Math. 78 (1997) 197-211; P. Amodio, L. Brugnano, Parallel ODE solvers based on block BVMs, Adv. Comput. Math. 7 (1997) 5-26], and analyze its connections with subsequent approaches to the parallel solution of ODE-IVPs, in particular the ''Parareal'' algorithm proposed in [J.L. Lions, Y. Maday, G. Turinici, Resolution d'EDP par un schema en temps ''parareel'', C. R. Acad. Sci. Paris, Ser. I 332 (2001) 661-668; Y. Maday, G. Turinici, A parareal in time procedure for the control of partial differential equations, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 387-392].

[1]  L. Brugnano,et al.  Solving differential problems by multistep initial and boundary value methods , 1998 .

[2]  J. Lions,et al.  Résolution d'EDP par un schéma en temps « pararéel » , 2001 .

[3]  I. Gladwell,et al.  Numerical Solution of General Bordered ABD Linear Systems by Cyclic Reduction , 2006 .

[4]  J. Périaux,et al.  Domain Decomposition Methods in Science and Engineering , 1994 .

[5]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[6]  I. Moret,et al.  RD-Rational Approximations of the Matrix Exponential , 2004 .

[7]  Martin J. Gander,et al.  Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..

[8]  Kevin Burrage,et al.  Parallel and sequential methods for ordinary differential equations , 1995, Numerical analysis and scientific computation.

[9]  Claude Le Bris,et al.  Computational chemistry from the perspective of numerical analysis , 2005, Acta Numerica.

[10]  S. Ulbrich Generalized SQP-Methods with ''Parareal'' Time-Domain Decomposition for Time-dependent PDE-constrained Optimization , 2007 .

[11]  Donato Trigiante,et al.  Parallel implementation of block boundary value methods on nonlinear problems: theoretical results , 1998 .

[12]  Y. Maday,et al.  A parareal in time procedure for the control of partial differential equations , 2002 .

[13]  Pierluigi Amodio,et al.  Parallel implementation of block boundary value methods for ODEs , 1997 .

[14]  Pierluigi Amodio,et al.  The Parallel QR Factorization Algorithm for Tridiagonal Linear Systems , 1995, Parallel Comput..

[15]  C. Streett,et al.  Improvements in spectral collocation discretization through a multiple domain technique , 1986 .

[16]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[17]  T. Politi,et al.  Parallel factorizations for tridiagonal matrices , 1993 .

[18]  Kevin Burrage Parallel methods for ODEs , 1997, Adv. Comput. Math..

[19]  Martin J. Gander,et al.  Nonlinear Convergence Analysis for the Parareal Algorithm , 2008 .

[20]  Martin J. Gander,et al.  On the Superlinear and Linear Convergence of the Parareal Algorithm , 2007, CSE 2007.

[21]  P. Amodio,et al.  Parallel factorizations and parallel solvers for tridiagonal linear systems , 1992 .

[22]  Pierluigi Amodio,et al.  Parallel ODE solvers based on block BVMs , 1997, Adv. Comput. Math..

[23]  Donato Trigiante,et al.  On the potentiality of sequential and parallel codes based on extended trapezoidal rules (ETRs) , 1997 .

[24]  Giuseppe Romanazzi,et al.  Algorithm 859: BABDCR—a Fortran 90 package for the solution of bordered ABD linear systems , 2006, TOMS.

[25]  Luigi Brugnano,et al.  ParalleloGAM : a parallel code for ODES * , 2003 .

[26]  Yvon Maday,et al.  The Parareal in Time Iterative Solver: a Further Direction to Parallel Implementation , 2005 .