Distribution of some graph invariants over hierarchical product of graphs

The hierarchical product of graphs was introduced very recently by L. Barriere et al. in [On the spectra of hypertrees, Linear Algebra Appl. 428 (2008) 1499-1510], and some of its main properties were studied. In this paper, some new properties of this new graph product are investigated. We prove that G"n@?...@?G"1 is median graph if and only if G"1,G"2,...,G"n are median. An exact formula for metric dimension of G"n@?...@?G"1, as well as formulas for the eccentric distance sum and edge revised Szeged of hierarchical product of graphs are presented. Some applications of our results are also presented.

[1]  Guihai Yu,et al.  On the eccentric distance sum of trees and unicyclic graphs , 2011 .

[2]  I. Gutman,et al.  Eccentric Connectivity Index of Chemical Trees , 2011, 1104.3206.

[3]  H. Hosoya Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons , 1971 .

[4]  Simon Mukwembi,et al.  On the eccentric connectivity index of a graph , 2011, Discret. Math..

[5]  Lali Barrière,et al.  The generalized hierarchical product of graphs , 2009, Discret. Math..

[6]  I. Gutman,et al.  Wiener Index of Hexagonal Systems , 2002 .

[7]  Bo Zhou,et al.  ON ECCENTRIC CONNECTIVITY INDEX , 2010 .

[8]  Juan A. Rodríguez-Velázquez,et al.  On the metric dimension of corona product graphs , 2011, Comput. Math. Appl..

[9]  Stephan G. Wagner,et al.  Some new results on distance-based graph invariants , 2009, Eur. J. Comb..

[10]  A. Ashrafi,et al.  The eccentric connectivity index of $TUC_4C_8(R)$ nanotubes , 2011 .

[11]  Bazil Pârv,et al.  Molecular topology, 25. Hyper-Wiener index of dendrimers , 1995, J. Chem. Inf. Comput. Sci..

[12]  I. Gutman,et al.  Wiener Index of Trees: Theory and Applications , 2001 .

[13]  Tomaz Pisanski,et al.  Use of the Szeged index and the revised Szeged index for measuring network bipartivity , 2010, Discret. Appl. Math..

[14]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[15]  Sandi Klavzar,et al.  On distance-balanced graphs , 2010, Eur. J. Comb..

[16]  Sunil Gupta,et al.  Eccentric distance sum: A novel graph invariant for predicting biological and physical properties , 2002 .

[17]  Mostafa Tavakoli,et al.  Further Results on Distance-balanced graphs , 2013 .

[18]  K Handa バランス(a,b)分割による2部グラフ | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1999 .

[19]  Bijan Taeri,et al.  Applications of Generalized Hierarchical Product of Graphs in Computing the Szeged Index of Chemical Graphs , 2010 .

[20]  A. Ashrafi,et al.  Note on edge distance-balanced graphs , 2012 .

[21]  Douglas F. Rall,et al.  Distance-Balanced Graphs , 2008 .

[22]  A. K. Madan,et al.  Eccentric Connectivity Index: A Novel Highly Discriminating Topological Descriptor for Structure-Property and Structure-Activity Studies , 1997, J. Chem. Inf. Comput. Sci..

[23]  Lali Barrière,et al.  The hierarchical product of graphs , 2009, Discret. Appl. Math..

[24]  Ali Reza Ashrafi,et al.  Further results on hierarchical product of graphs , 2013, Discret. Appl. Math..

[25]  Ivan Gutman,et al.  On the sum of all distances in composite graphs , 1994, Discret. Math..

[26]  Mustapha Aouchiche,et al.  On a conjecture about the Szeged index , 2010, Eur. J. Comb..

[27]  I. Gutman,et al.  The Edge Version of the Szeged Index , 2008 .

[28]  Milan Randić On generalization of wiener index for cyclic structures , 2002 .

[29]  Ali Reza Ashrafi,et al.  The eccentric connectivity index of nanotubes and nanotori , 2011, J. Comput. Appl. Math..