Algorithms for ℓ1-Minimization

This chapter presents a selection of three algorithms designed specifically to compute solutions of l 1-minimization problems. The algorithms, chosen with simplicity of analysis and diversity of techniques in mind, are the homotopy method, Chambolle and Pock’s primal–dual algorithm, and the iteratively reweighted least squares algorithm. Other algorithms are also mentioned but discussed in less detail.

[1]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[2]  Wotao Yin,et al.  Iteratively reweighted algorithms for compressive sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[3]  Xavier Bresson,et al.  Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction , 2010, SIAM J. Imaging Sci..

[4]  Yin Zhang,et al.  Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..

[5]  Massimo Fornasier,et al.  Recovery Algorithms for Vector-Valued Data with Joint Sparsity Constraints , 2008, SIAM J. Numer. Anal..

[6]  Shiqian Ma,et al.  Convergence of Fixed-Point Continuation Algorithms for Matrix Rank Minimization , 2009, Found. Comput. Math..

[7]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[8]  Rick Chartrand,et al.  Exact Reconstruction of Sparse Signals via Nonconvex Minimization , 2007, IEEE Signal Processing Letters.

[9]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[10]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[11]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[12]  R. Tyrrell Rockafellar,et al.  Convergence Rates in Forward-Backward Splitting , 1997, SIAM J. Optim..

[13]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale $\ell_1$-Regularized Least Squares , 2007, IEEE Journal of Selected Topics in Signal Processing.

[14]  Mohamed-Jalal Fadili,et al.  Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity, by Jean-Luc Starck, Fionn Murtagh, and Jalal M. Fadili , 2010, J. Electronic Imaging.

[15]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[16]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[17]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[18]  M. R. Osborne,et al.  A new approach to variable selection in least squares problems , 2000 .

[19]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[20]  Simon Setzer,et al.  Operator Splittings, Bregman Methods and Frame Shrinkage in Image Processing , 2011, International Journal of Computer Vision.

[21]  Antonin Chambolle,et al.  Diagonal preconditioning for first order primal-dual algorithms in convex optimization , 2011, 2011 International Conference on Computer Vision.

[22]  Bingsheng He,et al.  Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective , 2012, SIAM J. Imaging Sci..

[23]  J.-C. Pesquet,et al.  A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery , 2007, IEEE Journal of Selected Topics in Signal Processing.

[24]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.

[25]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[26]  Ignace Loris L1Packv2: A Mathematica package for minimizing an l1-penalized functional , 2008, Comput. Phys. Commun..

[27]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[28]  Yaakov Tsaig,et al.  Fast Solution of $\ell _{1}$ -Norm Minimization Problems When the Solution May Be Sparse , 2008, IEEE Transactions on Information Theory.

[29]  M. R. Osborne Finite Algorithms in Optimization and Data Analysis , 1985 .

[30]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[31]  K. Bredies,et al.  Linear Convergence of Iterative Soft-Thresholding , 2007, 0709.1598.

[32]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[33]  Mohamed-Jalal Fadili,et al.  A Generalized Forward-Backward Splitting , 2011, SIAM J. Imaging Sci..

[34]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[35]  Wotao Yin,et al.  FIXED-POINT CONTINUATION APPLIED TO COMPRESSED SENSING: IMPLEMENTATION AND NUMERICAL EXPERIMENTS * , 2010 .

[36]  M. R. Osborne,et al.  On the LASSO and its Dual , 2000 .

[37]  José M. Bioucas-Dias,et al.  Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[38]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[39]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[40]  Michael Möller,et al.  An adaptive inverse scale space method for compressed sensing , 2012, Math. Comput..

[41]  Marc Teboulle,et al.  Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.

[42]  Massimo Fornasier,et al.  Numerical Methods for Sparse Recovery , 2010 .

[43]  J. M. Martínez,et al.  Inexact spectral projected gradient methods on convex sets , 2003 .

[44]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[45]  M. Fornasier,et al.  Iterative thresholding algorithms , 2008 .

[46]  J. King,et al.  A minimal error conjugate gradient method for ill-posed problems , 1989 .

[47]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[48]  Sören Bartels,et al.  Total Variation Minimization with Finite Elements: Convergence and Iterative Solution , 2012, SIAM J. Numer. Anal..

[49]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[50]  Dirk A. Lorenz,et al.  Solving Basis Pursuit , 2015 .

[51]  Stanley Osher,et al.  A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..

[52]  Massimo Fornasier,et al.  Low-rank Matrix Recovery via Iteratively Reweighted Least Squares Minimization , 2010, SIAM J. Optim..

[53]  B. Martinet Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .

[54]  R. Chartrand,et al.  Restricted isometry properties and nonconvex compressive sensing , 2007 .

[55]  Daniel Cremers,et al.  An algorithm for minimizing the Mumford-Shah functional , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[56]  I. Daubechies,et al.  Accelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints , 2007, 0706.4297.

[57]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[58]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[59]  Michael A. Saunders,et al.  Proximal Newton-type methods for convex optimization , 2012, NIPS.