CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan

David R. Croucher | J. Kench | L. Andrews | J. Pearson | Monisha Samuel | S. Mathivanan | R. Hruban | J. Eshleman | A. Biankin | M. Pajic | N. Waddell | S. Grimmond | D. Croucher | N. Pavlakis | J. Kirk | K. Tucker | S. Beghelli | P. Timpson | Max Nobis | A. Patch | A. Johns | K. Nones | T. Bruxner | Angelika N. Christ | O. Holmes | S. Kazakoff | C. Leonard | F. Newell | S. Wood | M. Pinese | L. Chantrill | A. Steinmann | A. Chou | J. Samra | N. Merrett | K. Epari | A. Barbour | N. Zeps | N. Jamieson | elliot k fishman | R. Lawlor | V. Corbo | C. Bassi | A. Gill | O. Sansom | S. Grey | M. Scardoni | A. W. Braithwaite | R. S. Mead | A. Benda | B. Parker | C. Cooper | Gabriella Kalna | P. Grimison | R. Asghari | S. Warren | M. Lucas | K. Murphy | D. Herrmann | Yingxiao Wang | P. Phillips | D. Roden | J. Morton | J. Fawcett | A. Ruszkiewicz | T. Cox | M. Texler | C. Sandroussi | Wilfred Leung | C. Vennin | P. Mukhopadhyay | A. Clouston | D. Christ | P. Cosman | D. Pavey | V. Addala | Aurélie S Cazet | M. Nikfarjam | Aurélie S. Cazet | Andrew M. Da Silva | J. Whitelock | R. Rouet | A. Stoita | Z. Elgundi | Brooke A. Pereira | A. Goodwin | M. Brooke-Smith | K. Feeney | K. Slater | John Chen | D. Froio | Peter Hodgkinson | M. Hatzifotis | A. Parkin | M. Arshi | H. High | V. Papangelis | K. Ismail | Amitabha Das | A. Zaratzian | Oliver Hofmann | Shona Ritchie | Pauline Mélénec | M. Beilin | Daniel A Reed | D. Fletcher | M. Nobis | Tanya M. Dwarte | M. Ballal | C. R. Chambers | Amber L. Lorraine A. Angela Angela Mehreen Tanya Daniell Johns Chantrill Chou Steinmann Arshi Dwarte | Xanthe L Metcalf | Chelsie O’Connnor | David B. Williams | Allan Spigellman | Vincent W. Lam | D. Mcleod | C. Forest | Sanjay Mukhedkar | Nan Q. Nguyen | C. Worthley | T. J. O'Rourke | J. Dixon | David K. Chang | Daniel A. Reed | C. Chambers | D. K. Chang | D. Chang | Kellee Slater | Anaiis Zaratzian

[1]  J. Norman,et al.  Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels , 2018, Nature Communications.

[2]  S. Lakhani,et al.  CEP55 is a determinant of cell fate during perturbed mitosis in breast cancer , 2018, EMBO molecular medicine.

[3]  F. Rojo,et al.  Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer , 2018, Nature Communications.

[4]  David R. Croucher,et al.  MASTL overexpression promotes chromosome instability and metastasis in breast cancer , 2018, Oncogene.

[5]  J. Melrose,et al.  The multifaceted roles of perlecan in fibrosis. , 2018, Matrix biology : journal of the International Society for Matrix Biology.

[6]  H. Yao,et al.  CD10+GPR77+ Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness , 2018, Cell.

[7]  M. Pajic,et al.  Reshaping the Tumor Stroma for Treatment of Pancreatic Cancer. , 2017, Gastroenterology.

[8]  A. Jemal,et al.  Cancer statistics, 2018 , 2018, CA: a cancer journal for clinicians.

[9]  Tania L. Slatter,et al.  ∆133p53 isoform promotes tumour invasion and metastasis via interleukin-6 activation of JAK-STAT and RhoA-ROCK signalling , 2018, Nature Communications.

[10]  Thomas R. Cox,et al.  Three-dimensional organotypic matrices from alternative collagen sources as pre-clinical models for cell biology , 2017, Scientific Reports.

[11]  A. Biankin,et al.  Tailored first-line and second-line CDK4-targeting treatment combinations in mouse models of pancreatic cancer , 2017, Gut.

[12]  Sean C Warren,et al.  A RhoA-FRET Biosensor Mouse for Intravital Imaging in Normal Tissue Homeostasis and Disease Contexts. , 2017, Cell reports.

[13]  C. Glass,et al.  Mutant p53 shapes the enhancer landscape of cancer cells in response to chronic immune signaling , 2017, Nature Communications.

[14]  Scott W. Lowe,et al.  Putting p53 in Context , 2017, Cell.

[15]  K. Wiman,et al.  Human cancer-associated fibroblasts enhance glutathione levels and antagonize drug-induced prostate cancer cell death , 2017, Cell Death & Disease.

[16]  G. Baldwin,et al.  Inhibition of group 1 p21‐activated kinases suppresses pancreatic stellate cell activation and increases survival of mice with pancreatic cancer , 2017, International journal of cancer.

[17]  Max Nobis,et al.  Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis , 2017, Science Translational Medicine.

[18]  A. Biankin,et al.  SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer , 2017, Oncogene.

[19]  Hans Clevers,et al.  Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer , 2017, The Journal of experimental medicine.

[20]  Takuya Kato,et al.  A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion , 2017, Nature Cell Biology.

[21]  R. Iozzo,et al.  A current view of perlecan in physiology and pathology: A mosaic of functions. , 2017, Matrix biology : journal of the International Society for Matrix Biology.

[22]  Gun Ho Jang,et al.  A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns , 2016, Nature.

[23]  P. Timpson,et al.  The Δ133p53 isoform and its mouse analogue Δ122p53 promote invasion and metastasis involving pro-inflammatory molecules interleukin-6 and CCL2 , 2016, Oncogene.

[24]  M. Muldoon,et al.  Correction: Perlecan/HSPG2 and matrilysin/MMP-7 as indices of tissue invasion: tissue localization and circulating perlecan fragments in a cohort of 288 radical prostatectomy patients , 2016, OncoTarget.

[25]  R. Kalluri The biology and function of fibroblasts in cancer , 2016, Nature Reviews Cancer.

[26]  A. Biankin,et al.  CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal Adenocarcinoma , 2016, Cancer cell.

[27]  B. Hall,et al.  Tumor Induced Stromal Reprogramming Drives Lymph Node Transformation , 2016, Nature Immunology.

[28]  Björn Schumacher,et al.  p53 in the DNA-Damage-Repair Process. , 2016, Cold Spring Harbor perspectives in medicine.

[29]  Christine A Iacobuzio-Donahue,et al.  Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular-fibrosis and tumor progression , 2016, Nature Medicine.

[30]  R. Carmody,et al.  Modulation of NF-κB Signaling as a Therapeutic Target in Autoimmunity , 2016, Journal of biomolecular screening.

[31]  R. Gibbs,et al.  Genomic analyses identify molecular subtypes of pancreatic cancer , 2016, Nature.

[32]  M. Muldoon,et al.  Perlecan/HSPG2 and matrilysin/MMP-7 as indices of tissue invasion: tissue localization and circulating perlecan fragments in a cohort of 288 radical prostatectomy patients , 2016, Oncotarget.

[33]  J. Brody,et al.  Personalized therapy for pancreatic cancer: Do we need better targets, arrows, or both? , 2016, Discovery medicine.

[34]  Shereen R Kadir,et al.  Intravital FRAP Imaging using an E-cadherin-GFP Mouse Reveals Disease- and Drug-Dependent Dynamic Regulation of Cell-Cell Junctions in Live Tissue , 2015, Cell reports.

[35]  Walter Kolch,et al.  Signaling pathway models as biomarkers: Patient-specific simulations of JNK activity predict the survival of neuroblastoma patients , 2015, Science Signaling.

[36]  Rosanne Raso,et al.  Changing a paradigm. , 2015, Nursing management.

[37]  Jen Jen Yeh,et al.  Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma , 2015, Nature Genetics.

[38]  G. Charras,et al.  Hypoxia and loss of PHD2 inactivate stromal fibroblasts to decrease tumour stiffness and metastasis , 2015, EMBO reports.

[39]  D. Tuveson,et al.  Stromal biology and therapy in pancreatic cancer: a changing paradigm , 2015, Gut.

[40]  R. Tomasini,et al.  Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumour chemoresistance , 2015, EMBO molecular medicine.

[41]  J. Kench,et al.  Whole genomes redefine the mutational landscape of pancreatic cancer , 2015, Nature.

[42]  N. Jamieson,et al.  nab-Paclitaxel Plus Gemcitabine for Metastatic Pancreatic Cancer: Long-Term Survival From a Phase III Trial , 2015 .

[43]  Guillaume Charras,et al.  Physical influences of the extracellular environment on cell migration , 2014, Nature Reviews Molecular Cell Biology.

[44]  V. Weaver,et al.  The extracellular matrix modulates the hallmarks of cancer , 2014, EMBO reports.

[45]  J. Doudna,et al.  The new frontier of genome engineering with CRISPR-Cas9 , 2014, Science.

[46]  G. Wahl,et al.  Vitamin D Receptor-Mediated Stromal Reprogramming Suppresses Pancreatitis and Enhances Pancreatic Cancer Therapy , 2014, Cell.

[47]  Benjamin J. Raphael,et al.  Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin , 2014, Cell.

[48]  M. Farach-Carson,et al.  Transcriptional Activation by NFκB Increases Perlecan/HSPG2 Expression in the Desmoplastic Prostate Tumor Microenvironment , 2014, Journal of cellular biochemistry.

[49]  G. Melino,et al.  Functions of TAp63 and p53 in restraining the development of metastatic cancer , 2014, Oncogene.

[50]  Stephen A. Sastra,et al.  Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. , 2014, Cancer cell.

[51]  M. Korc,et al.  Pancreatic cancer stroma: friend or foe? , 2014, Cancer cell.

[52]  Umar Mahmood,et al.  Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. , 2014, Cancer cell.

[53]  Jacco van Rheenen,et al.  Imaging hallmarks of cancer in living mice , 2014, Nature Reviews Cancer.

[54]  L. Attardi,et al.  Unravelling mechanisms of p53-mediated tumour suppression , 2014, Nature Reviews Cancer.

[55]  Jianmin Wu,et al.  Mutant p53 Drives Pancreatic Cancer Metastasis through Cell-Autonomous PDGF Receptor β Signaling , 2014, Cell.

[56]  Karen H. Vousden,et al.  Mutant p53 in Cancer: New Functions and Therapeutic Opportunities , 2014, Cancer cell.

[57]  D. Fearon The Carcinoma-Associated Fibroblast Expressing Fibroblast Activation Protein and Escape from Immune Surveillance , 2014, Cancer Immunology Research.

[58]  Arezki Boudaoud,et al.  FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images , 2014, Nature Protocols.

[59]  Derek S. Chan,et al.  Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti–PD-L1 immunotherapy in pancreatic cancer , 2013, Proceedings of the National Academy of Sciences.

[60]  Benjamin J. Raphael,et al.  Mutational landscape and significance across 12 major cancer types , 2013, Nature.

[61]  K. O'Byrne,et al.  Targeting Nuclear Factor-Kappa B to Overcome Resistance to Chemotherapy , 2013, Front. Oncol..

[62]  Derek S. Chan,et al.  Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer , 2012, Gut.

[63]  Carlos Cuevas,et al.  Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. , 2012, Cancer cell.

[64]  Erik Sahai,et al.  ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma. , 2011, Cancer cell.

[65]  N. Carragher,et al.  Spatial regulation of RhoA activity during pancreatic cancer cell invasion driven by mutant p53. , 2011, Cancer research.

[66]  Ruili Huang,et al.  Identification of known drugs that act as inhibitors of NF-kappaB signaling and their mechanism of action. , 2010, Biochemical pharmacology.

[67]  O. Gavet,et al.  Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. , 2010, Developmental cell.

[68]  O. Gavet,et al.  Activation of cyclin B1–Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis , 2010, The Journal of cell biology.

[69]  Peter Olson,et al.  Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate Tumor-Promoting Inflammation in an NF-kappaB-Dependent Manner. , 2010, Cancer cell.

[70]  Paul Timpson,et al.  Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer , 2010, Proceedings of the National Academy of Sciences.

[71]  Riccardo Cicchi,et al.  Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy , 2009, Journal of biophotonics.

[72]  David Allard,et al.  Inhibition of Hedgehog Signaling Enhances Delivery of Chemotherapy in a Mouse Model of Pancreatic Cancer , 2009, Science.

[73]  Erik Sahai,et al.  The actin cytoskeleton in cancer cell motility , 2009, Clinical & Experimental Metastasis.

[74]  David A. Tuveson,et al.  The Use of Targeted Mouse Models for Preclinical Testing of Novel Cancer Therapeutics , 2006, Clinical Cancer Research.

[75]  R. Hruban,et al.  Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. , 2005, Cancer cell.

[76]  T. Jacks,et al.  Mutant p53 Gain of Function in Two Mouse Models of Li-Fraumeni Syndrome , 2004, Cell.

[77]  Benjamin M. Bolstad,et al.  affy - analysis of Affymetrix GeneChip data at the probe level , 2004, Bioinform..

[78]  E. Petricoin,et al.  Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. , 2003, Cancer cell.

[79]  T. Speed,et al.  Summaries of Affymetrix GeneChip probe level data. , 2003, Nucleic acids research.

[80]  N. Stoecklein,et al.  Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer , 2002, The Lancet.

[81]  D. Goeddel,et al.  TNF-R1 Signaling: A Beautiful Pathway , 2002, Science.

[82]  Kenneth M. Yamada,et al.  Taking Cell-Matrix Adhesions to the Third Dimension , 2001, Science.

[83]  John M. Whitelock,et al.  The Degradation of Human Endothelial Cell-derived Perlecan and Release of Bound Basic Fibroblast Growth Factor by Stromelysin, Collagenase, Plasmin, and Heparanases (*) , 1996, The Journal of Biological Chemistry.

[84]  D. Lane,et al.  p53, guardian of the genome , 1992, Nature.