A jigsaw-structured artificial solid electrolyte interphase for high-voltage lithium metal batteries

[1]  Dingcai Wu,et al.  Dendrite‐Free and Long‐Cycling Lithium Metal Battery Enabled by Ultrathin, 2D Shield‐Defensive, and Single Lithium‐Ion Conducting Polymeric Membrane , 2022, Advanced materials.

[2]  Dingcai Wu,et al.  A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes , 2022, Nature Nanotechnology.

[3]  Shubin Yang,et al.  A Highly Durable Rubber‐Derived Lithium‐Conducting Elastomer for Lithium Metal Batteries , 2022, Advanced science.

[4]  Chenguang Shi,et al.  Rigid and Flexible SEI Layer Formed Over a Cross‐Linked Polymer for Enhanced Ultrathin Li Metal Anode Performance , 2022, Advanced Energy Materials.

[5]  J. Liu,et al.  In Situ Construction a Stable Protective Layer in Polymer Electrolyte for Ultralong Lifespan Solid‐State Lithium Metal Batteries , 2022, Advanced science.

[6]  Zhijie Guo,et al.  A Multifunctional Silicon-Doped Polyether Network for Double Stable Interfaces in Quasi-Solid-State Lithium Metal Batteries. , 2022, Small.

[7]  L. Ci,et al.  Safe and Stable Lithium Metal Batteries Enabled by an Amide-Based Electrolyte , 2022, Nano-Micro Letters.

[8]  L. Ci,et al.  Safe and Stable Lithium Metal Batteries Enabled by an Amide-Based Electrolyte , 2022, Nano-Micro Letters.

[9]  Xiaohui Zhao,et al.  A "Blockchain" Synergy in Conductive Polymer-filled Metal-Organic Frameworks for Dendrite-free Li Plating/Stripping with High Coulombic Efficiency. , 2022, Angewandte Chemie.

[10]  Junda Huang,et al.  Li2CO3/LiF‐Rich Heterostructured Solid Electrolyte Interphase with Superior Lithiophilic and Li+‐Transferred Characteristics via Adjusting Electrolyte Additives , 2022 .

[11]  H. Xiang,et al.  An acetamide additive stabilizing ultra-low concentration electrolyte for long-cycling and high-rate sodium metal battery , 2021 .

[12]  Qingping Wu,et al.  Li+ Repulsion-Enrichment Synergism Induced by "Core-Shell" Ionic Complexes to Enable High-Loading Li Metal Batteries. , 2021, Angewandte Chemie.

[13]  Hong‐Jie Peng,et al.  Selective Permeable Lithium-ion Channels on Lithium Metal for Practical Lithium-Sulfur Pouch Cells. , 2021, Angewandte Chemie.

[14]  David G. Mackanic,et al.  Dual‐Solvent Li‐Ion Solvation Enables High‐Performance Li‐Metal Batteries , 2021, Advanced materials.

[15]  Chilin Li,et al.  C–F-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode , 2021 .

[16]  Qingping Wu,et al.  Dynamical SEI Reinforced by Open‐Architecture MOF Film with Stereoscopic Lithiophilic Sites for High‐Performance Lithium–Metal Batteries , 2021, Advanced Functional Materials.

[17]  Zhenguo Yao,et al.  Consecutive Nucleation and Confinement Modulation towards Li Plating in Seeded Capsules for Durable Li-Metal Batteries. , 2021, Angewandte Chemie.

[18]  Yan‐Bing He,et al.  Lithium Metal Electrode with Increased Air Stability and Robust Solid Electrolyte Interphase Realized by Silane Coupling Agent Modification , 2021, Advanced materials.

[19]  Jens Leker,et al.  Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure , 2021, Nature Energy.

[20]  A. Yu,et al.  Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries , 2021, Nature communications.

[21]  Yi Cui,et al.  Design Principles of Artificial Solid Electrolyte Interphases for Lithium-Metal Anodes , 2020 .

[22]  Jun Lu,et al.  Fluorinated co-solvent promises Li-S batteries under lean-electrolyte conditions , 2020 .

[23]  J. Tour,et al.  Laser‐Induced Silicon Oxide for Anode‐Free Lithium Metal Batteries , 2020, Advanced materials.

[24]  Chibueze V. Amanchukwu,et al.  Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries , 2020, Nature Energy.

[25]  L. Zhuang,et al.  Mesoporous Silica Reinforced Hybrid Polymer Artificial Layer for High-Energy and Long-Cycling Lithium Metal Batteries , 2020 .

[26]  Chibueze V. Amanchukwu,et al.  A new class of ionically conducting fluorinated ether electrolytes with high electrochemical stability. , 2020, Journal of the American Chemical Society.

[27]  Chilin Li,et al.  Ultrathin Defective C-N Coating to Enable Nanostructured Li Plating for Li Metal Batteries. , 2020, ACS nano.

[28]  Rui Zhang,et al.  A Sustainable Solid Electrolyte Interphase for High‐Energy‐Density Lithium Metal Batteries Under Practical Conditions , 2020 .

[29]  Rui Zhang,et al.  Sustainable solid electrolyte interphase enables high-energy-density lithium metal batteries under practical conditions. , 2019, Angewandte Chemie.

[30]  Xiulin Fan,et al.  All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents , 2019, Nature Energy.

[31]  R. Pathak,et al.  Ultrathin Bilayer of Graphite/SiO2 as Solid Interface for Reviving Li Metal Anode , 2019, Advanced Energy Materials.

[32]  Chilin Li,et al.  Liquid Polydimethylsiloxane Grafting to Enable Dendrite‐Free Li Plating for Highly Reversible Li‐Metal Batteries , 2019, Advanced Functional Materials.

[33]  Martin Winter,et al.  Theoretical versus Practical Energy: A Plea for More Transparency in the Energy Calculation of Different Rechargeable Battery Systems , 2018, Advanced Energy Materials.

[34]  Chilin Li,et al.  Nanostructured Li-Rich Fluoride Coated by Ionic Liquid as High Ion-Conductivity Solid Electrolyte Additive to Suppress Dendrite Growth at Li Metal Anode. , 2018, ACS applied materials & interfaces.

[35]  Allen Pei,et al.  Lithium metal stripping beneath the solid electrolyte interphase , 2018, Proceedings of the National Academy of Sciences.

[36]  Yong Yang,et al.  Enhanced Electrochemical Performance of High-Energy Lithium-Sulfur Batteries Using an Electrolyte with 1,1,2,2-Tetrafluoro-3-(1,1,2,2-tetrafluoroethoxy)propane , 2018 .

[37]  Lu Li,et al.  Self-heating–induced healing of lithium dendrites , 2018, Science.

[38]  M. Dollé,et al.  An Artificial Lithium Protective Layer that Enables the Use of Acetonitrile-Based Electrolytes in Lithium Metal Batteries. , 2018, Angewandte Chemie.

[39]  Qiangfeng Xiao,et al.  Fabrication of Hybrid Silicate Coatings by a Simple Vapor Deposition Method for Lithium Metal Anodes , 2018 .

[40]  P. Albertus,et al.  Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries , 2017, Nature Energy.

[41]  Allen Pei,et al.  Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability. , 2017, Journal of the American Chemical Society.

[42]  B. Dunn,et al.  Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon. , 2017, Nano letters.

[43]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[44]  Wei Liu,et al.  Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes , 2017, ACS central science.

[45]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[46]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[47]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[48]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[49]  E. P. Lewis In perspective. , 1972, Nursing outlook.