Ensemble-Based Data Assimilation of Volcanic Ash Clouds from Satellite Observations: Application to the 24 December 2018 Mt. Etna Explosive Eruption

Accurate tracking and forecasting of ash dispersal in the atmosphere and quantification of its uncertainty are of fundamental importance for volcanic risk mitigation. Numerical models and satellite sensors offer two complementary ways to monitor ash clouds in real time, but limits and uncertainties affect both techniques. Numerical forecasts of volcanic clouds can be improved by assimilating satellite observations of atmospheric ash mass load. In this paper, we present a data assimilation procedure aimed at improving the monitoring and forecasting of volcanic ash clouds produced by explosive eruptions. In particular, we applied the Local Ensemble Transform Kalman Filter (LETKF) to the results of the Volcanic Ash Transport and Dispersion model HYSPLIT. To properly simulate the release and atmospheric transport of volcanic ash particles, HYSPLIT has been initialized with the results of the eruptive column model PLUME-MoM. The assimilation procedure has been tested against SEVIRI measurements of the volcanic cloud produced during the explosive eruption occurred at Mt. Etna on 24 December 2018. The results show how the assimilation procedure significantly improves the representation of the current ash dispersal and its forecast. In addition, the numerical tests show that the use of the sequential Ensemble Kalman Filter does not require a precise initialization of the numerical model, being able to improve the forecasts as the assimilation cycles are performed.

[1]  Liu Jian,et al.  Satellite remote sensing of volcanic ash cloud in complicated meteorological conditions , 2011 .

[2]  Luca Merucci,et al.  Volcanic ash and SO2 in the 2008 Kasatochi eruption: Retrievals comparison from different IR satellite sensors , 2010 .

[3]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[4]  D. Aminou MSG's SEVIRI instrument , 2002 .

[5]  Lieven Clarisse,et al.  Detection of volcanic SO2, ash, and H2SO4 using the Infrared Atmospheric Sounding Interferometer (IASI) , 2010 .

[6]  Matthew J. Roberts,et al.  Eruptions of Eyjafjallajökull Volcano, Iceland , 2010 .

[7]  T. Hamill Interpretation of Rank Histograms for Verifying Ensemble Forecasts , 2001 .

[8]  Gudmundur F. Ulfarsson,et al.  Developing scenarios to explore impacts and weaknesses in aviation response exercises for volcanic ash eruptions in Europe , 2019, Journal of Air Transport Management.

[9]  Isabelle De Smedt,et al.  Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: algorithm theoretical basis , 2016 .

[10]  R. Dare,et al.  Ensemble Prediction of the Dispersion of Volcanic Ash from the 13 February 2014 Eruption of Kelut, Indonesia , 2016 .

[11]  Jacques Verron,et al.  A singular evolutive extended Kalman filter for data assimilation in oceanography , 1998 .

[12]  William I. Rose,et al.  Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5 , 1994 .

[13]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[14]  M. Zidikheri,et al.  Quantitative Verification and Calibration of Volcanic Ash Ensemble Forecasts Using Satellite Data , 2018 .

[15]  A. Guillin,et al.  Quantifying the Uncertainty of a Coupled Plume and Tephra Dispersal Model: PLUME‐MOM/HYSPLIT Simulations Applied to Andean Volcanoes , 2020, Journal of Geophysical Research: Solid Earth.

[16]  Eda Marchetti,et al.  Ash-plume dynamics and eruption source parameters by infrasound and thermal imagery: The 2010 Eyjafjallajökull eruption , 2013 .

[17]  Sha Lu,et al.  Accelerating volcanic ash data assimilation using a mask-state algorithm based on an ensemble Kalman filter: A case study with the LOTOS-EUROS model (version 1.10) , 2017 .

[18]  Fawzi Doumaz,et al.  Investigation of the complex dynamics and structure of the 2010 Eyjafjallajökull volcanic ash cloud using multispectral images and numerical simulations , 2013 .

[19]  Fidel Costa,et al.  WOVOdat – An online, growing library of worldwide volcanic unrest , 2017 .

[20]  Istvan Szunyogh,et al.  A local ensemble Kalman filter for atmospheric data assimilation , 2004 .

[21]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[22]  Sara Basart,et al.  Validation of the FALL3D ash dispersion model using observations of the 2010 Eyjafjallajökull volcanic ash clouds , 2012 .

[23]  R. Draxler,et al.  NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System , 2015 .

[24]  Alfred J Prata,et al.  Observations of volcanic ash clouds in the 10-12 μm window using AVHRR/2 data , 1989 .

[25]  Augusto Neri,et al.  The VOL-CALPUFF model for atmospheric ash dispersal: 1. Approach and physical formulation , 2008 .

[26]  Augusto Neri,et al.  The VOL‐CALPUFF model for atmospheric ash dispersal: 2. Application to the weak Mount Etna plume of July 2001 , 2008 .

[27]  Luca Merucci,et al.  A new simplified procedure for the simultaneous SO 2 and ash retrieval in a tropospheric volcanic cloud , 2012 .

[28]  M. Levandowsky,et al.  Distance between Sets , 1971, Nature.

[29]  Costanza Bonadonna,et al.  Sedimentation from strong volcanic plumes , 2003 .

[30]  Frank S. Marzano,et al.  A Multi-Sensor Approach for Volcanic Ash Cloud Retrieval and Eruption Characterization: The 23 November 2013 Etna Lava Fountain , 2016, Remote. Sens..

[31]  Stefano Corradini,et al.  Mt. Etna tropospheric ash retrieval and sensitivity analysis using moderate resolution imaging spectroradiometer measurements , 2008 .

[32]  M. Neri,et al.  DInSAR Analysis and Analytical Modeling of Mount Etna Displacements: The December 2018 Volcano‐Tectonic Crisis , 2019, Geophysical Research Letters.

[33]  Carlos Borrego,et al.  Air Pollution Modeling and Its Application XVII , 2006 .

[34]  S. Barsotti,et al.  Reconstructing eruptive source parameters from tephra deposit: a numerical study of medium-sized explosive eruptions at Etna volcano , 2016, Bulletin of Volcanology.

[35]  Istvan Szunyogh,et al.  Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.

[36]  Carlo Cavazzoni,et al.  An automatic procedure to forecast tephra fallout , 2008 .

[37]  A. Stohl,et al.  Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2 , 2005 .

[38]  Giuseppe Puglisi,et al.  Large dyke intrusion and small eruption: The December 24, 2018 Mt. Etna eruption imaged by Sentinel‐1 data , 2019, Terra Nova.

[39]  A. Prata,et al.  SO 2 and ash plume retrievals using MSG-SEVIRI measurements. , 2008 .

[40]  Sha Lu,et al.  Assimilating aircraft-based measurements to improve forecast accuracy of volcanic ash transport , 2015 .

[41]  Alfred J Prata,et al.  Retrieval of microphysical and morphological properties of volcanic ash plumes from satellite data: Application to Mt Ruapehu, New Zealand , 2001 .

[42]  R. Denlinger,et al.  Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition , 2012 .

[43]  Marcus I. Bursik,et al.  Effect of wind on the rise height of volcanic plumes , 2001 .

[44]  R. Bannister A review of operational methods of variational and ensemble‐variational data assimilation , 2017 .

[45]  Jacques Pelon,et al.  Remote sensing of volcanic ash plumes from thermal infrared: a case study analysis from SEVIRI, MODIS and IASI instruments , 2013 .

[46]  Arnau Folch,et al.  FALL3D: A computational model for transport and deposition of volcanic ash , 2009, Comput. Geosci..

[47]  S. Charbonnier,et al.  Modeling the October 2005 lahars at Panabaj (Guatemala) , 2017, Bulletin of Volcanology.

[48]  G. Evensen,et al.  Sequential Data Assimilation Techniques in Oceanography , 2003 .

[49]  R. Thompson,et al.  The Lagrangian particle dispersion model FLEXPART version 10.4 , 2017 .

[50]  D. Nychka Data Assimilation” , 2006 .

[51]  Kerstin Stebel,et al.  Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption , 2011 .

[52]  Augusto Neri,et al.  PLUME-MoM 1.0: A new integral model of volcanic plumes based on the method of moments , 2015 .

[53]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[54]  Andrew Tupper,et al.  Aviation hazards from volcanoes: the state of the science , 2009 .

[55]  Arlin J. Krueger,et al.  Effect of particle non-sphericity on satellite monitoring of drifting volcanic ash clouds , 1999 .

[56]  Lieven Clarisse,et al.  A correlation method for volcanic ash detection using hyperspectral infrared measurements , 2010 .

[57]  J. Ruiz,et al.  Volcanic ash forecast using ensemble-based data assimilation: the Ensemble Transform Kalman Filter coupled with FALL3D-7.2 model (ETKF-FALL3D, version 1.0) , 2019 .

[58]  A. Guillin,et al.  Low efficiency of large volcanic eruptions in transporting very fine ash into the atmosphere , 2019, Scientific Reports.

[59]  Jens Schröter,et al.  Using sea-level data to constrain a finite-element primitive-equation ocean model with a local SEIK filter , 2006 .

[60]  David J. Thomson,et al.  The U.K. Met Office's Next-Generation Atmospheric Dispersion Model, NAME III , 2007 .

[61]  David J. Thomson,et al.  Using data insertion with the NAME model to simulate the 8 May 2010 Eyjafjallajökull volcanic ash cloud , 2016 .

[62]  Lieven Clarisse,et al.  The infrared spectral signature of volcanic ash determined from high-spectral resolution satellite measurements , 2010 .

[63]  SO2 and ash plume retrievals using MSG-SEVIRI measurements. Test case: 24 November 2006 Mt. Etna eruption , 2008, 2008 Second Workshop on Use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenic Areas.

[64]  J. Kerkmann,et al.  Simultaneous retrieval of volcanic ash and SO2 using MSG-SEVIRI measurements , 2007 .

[65]  P. Baxter,et al.  The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation , 2006 .

[66]  N. A. Krotkov,et al.  First Observations of Volcanic Eruption Clouds From the L1 Earth‐Sun Lagrange Point by DSCOVR/EPIC , 2018, Geophysical Research Letters.

[67]  Christopher Small,et al.  The global distribution of human population and recent volcanism , 2001 .

[68]  Arnau Folch,et al.  A review of tephra transport and dispersal models: Evolution, current status, and future perspectives , 2012 .

[69]  Luca Merucci,et al.  Evolution of the 2011 Mt. Etna ash and SO2 lava fountain episodes using SEVIRI data and VPR retrieval approach , 2015 .

[70]  Thilo Erbertseder,et al.  Observation of volcanic ash from Puyehue–Cordón Caulle with IASI , 2012 .

[71]  Scott E. Hannon,et al.  Quantifying tropospheric volcanic emissions with AIRS: The 2002 eruption of Mt. Etna (Italy) , 2005 .

[72]  Augusto Neri,et al.  Uncertainty quantification and sensitivity analysis of volcanic columns models: results from the integral model PLUME-MoM , 2016 .

[73]  Salvatore Stramondo,et al.  Volcanic ash detection and retrievals using MODIS data by means of neural networks , 2011 .

[74]  Freysteinn Sigmundsson,et al.  Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption , 2010, Nature.

[75]  Sha Lu,et al.  Data assimilation for volcanic ash plumes using a satellite observational operator: a case study on the 2010 Eyjafjallajökull volcanic eruption , 2017 .

[76]  Fuqing Zhang,et al.  Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation , 2016 .

[77]  W. Rose,et al.  Toms and Avhrr Observations of Drifting Volcanic Clouds from the August 1991 Eruptions of Cerro Hudson , 2013 .

[78]  E. Dlugokencky,et al.  Relating atmospheric N 2 O concentration to N 2 O emission strength in the U. S. Corn Belt , 2016 .

[79]  Sha Lu,et al.  Estimation of volcanic ash emissions through assimilating satellite data and ground‐based observations , 2016 .

[80]  Alfred J Prata,et al.  Infrared radiative transfer calculations for volcanic ash clouds , 1989 .

[81]  Francisco J. Doblas-Reyes,et al.  A Debiased Ranked Probability Skill Score to Evaluate Probabilistic Ensemble Forecasts with Small Ensemble Sizes , 2005 .

[82]  Luca Merucci,et al.  Eruption column height estimation of the 2011-2013 Etna lava fountains , 2014 .

[83]  Simona Scollo,et al.  Tephra fallout of 2001 Etna flank eruption: Analysis of the deposit and plume dispersion , 2007 .

[84]  Larry G. Mastin,et al.  A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions , 2009 .

[85]  Sha Lu,et al.  Model-based aviation advice on distal volcanic ash clouds byassimilating aircraft in situ measurements , 2016 .

[86]  M. Gouhier,et al.  Modeling Eruption Source Parameters by Integrating Field, Ground‐Based, and Satellite‐Based Measurements: The Case of the 23 February 2013 Etna Paroxysm , 2018, Journal of Geophysical Research: Solid Earth.

[87]  Lars Nerger,et al.  A Unification of Ensemble Square Root Kalman Filters , 2012 .

[88]  A. Segers,et al.  Satellite data assimilation to improve forecasts of volcanic ash concentrations , 2016 .

[89]  Lars Nerger,et al.  PDAF - The Parallel Data Assimilation Framework: Experiences with Kalman Filtering , 2005 .

[90]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[91]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[92]  Thorvaldur Thordarson,et al.  Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland , 2012, Scientific Reports.