Hybrid Two-Dimensional Electron Transport in Self-Consistent Electromagnetic Fields

The paper outlines features of the implicit hybrid simulation code ANTHEM, which uniquely provides histories for the transport and deposition of suprathermal and thermal electrons in laserproduced plasmas. The code models two-dimensional electron transport through steep density gradients and across contiguous collisional and collisionless target regions with the plasma dynamics dominated by self-consistent E and B fields. ANTHEM employs separate Eulerian fluid ion and thermal electron treatments and models suprathermal electrons as either a third fluid or as a set of collisional particle-in-cell (PIC) particles. We outline new techniques required to obtain implicit electromagnetic fields in two spatial dimensions permitting time steps well in excess of the local plasma period. A new implicit scattering model is discussed. The utility of our approach is demonstrated with sample applications to collisional surface transport on foil targets.

[1]  R. J. Mason,et al.  Hybrid and Collisional Implicit Plasma Simulation Models , 1985 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[4]  Jeremiah Brackbill,et al.  An implicit method for electromagnetic plasma simulation in two dimensions , 1982 .

[5]  Jeremiah Brackbill,et al.  An implicit moment electromagnetic plasma simulation in cylindrical coordinates , 1986 .

[6]  J. Virmont,et al.  Nonlocal heat transport due to steep temperature gradients , 1983 .

[7]  S. R. Goldman,et al.  A time-implicit Monte Carlo collision algorithm for particle-in-cell electron transport models , 1986 .

[8]  R. J. Mason,et al.  Implicit moment particle simulation of plasmas , 1981 .

[9]  T. Jordan CONJUGATE GRADIENT PRECONDITIONERS FOR VECTOR AND PARALLEL PROCESSORS , 1984 .

[10]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[11]  R. J. Mason,et al.  Monte Carlo hybrid modeling of electron transport in laser produced plasmas , 1980 .

[12]  J. Denavit,et al.  Time-filtering particle simulations with ωpe Δt ⪢ 1 , 1981 .

[13]  Jacques A. Delettrez,et al.  Electron Heat Flow with Inverse Bremsstrahlung and Ion Motion , 1984 .

[14]  John M. Dawson,et al.  One‐Dimensional Model of a Lorentz Plasma , 1967 .

[15]  C. W. Nielson,et al.  A multidimensional quasineutral plasma simulation model , 1978 .

[16]  Jeremiah Brackbill,et al.  Magnetic-field--induced surface transport on laser-irradiated foils , 1982 .

[17]  R. J. Mason,et al.  An electromagnetic field algorithm for 2d implicit plasma simulation , 1987 .

[18]  J. N. Leboeuf,et al.  Implicit particle simulation of magnetized plasmas , 1983 .

[19]  D. Kershaw The incomplete Cholesky—conjugate gradient method for the iterative solution of systems of linear equations , 1978 .

[20]  J. Virmont,et al.  Electron heat transport down steep temperature gradients , 1982 .

[21]  Bruce I. Cohen,et al.  Direct implicit large time-step particle simulation of plasmas , 1983 .

[22]  J. R. Albritton Laser absorption and heat transport by non-Maxwell-Boltzmann electron distributions , 1983 .

[23]  R. G. Evans,et al.  Electron energy transport in steep temperature gradients in laser-produced plasmas , 1981 .