A review of conceptual clustering algorithms

[1]  Ping Wang,et al.  Weighted-spectral clustering algorithm for detecting community structures in complex networks , 2017, Artificial Intelligence Review.

[2]  Rozaida Ghazali,et al.  A survey on bug prioritization , 2017, Artificial Intelligence Review.

[3]  Manuel Graña,et al.  Image Understanding Applications of Lattice Autoassociative Memories , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[4]  Peter Sussner,et al.  Tunable equivalence fuzzy associative memories , 2016, Fuzzy Sets Syst..

[5]  George A. Papakostas,et al.  Learning Distributions of Image Features by Interactive Fuzzy Lattice Reasoning in Pattern Recognition Applications , 2015, IEEE Computational Intelligence Magazine.

[6]  José Francisco Martínez Trinidad,et al.  Mining patterns for clustering on numerical datasets using unsupervised decision trees , 2015, Knowl. Based Syst..

[7]  Manuel Graña,et al.  A lattice computing approach to Alzheimer's disease computer assisted diagnosis based on MRI data , 2015, Neurocomputing.

[8]  Yazdan Jamshidi,et al.  gsaINknn: A GSA optimized, lattice computing knn classifier , 2014, Eng. Appl. Artif. Intell..

[9]  Hao Chen,et al.  A Frequent Term-Based Multiple Clustering Approach for Text Documents , 2014, APWeb.

[10]  Rui Ying Xu,et al.  Network Intrusion Detection Data Processing Research Based on Concept Clustering AOI Algorithm , 2014 .

[11]  George A. Papakostas,et al.  Lattice Computing Extension of the FAM Neural Classifier for Human Facial Expression Recognition , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[12]  James Bailey,et al.  Contrast Data Mining: Concepts, Algorithms, and Applications , 2012 .

[13]  Muhammad Younus Javed,et al.  A hierarchical k-means clustering based fingerprint quality classification , 2012, Neurocomputing.

[14]  Hans-Hellmut Nagel,et al.  Cognitive visual tracking and camera control , 2012, Comput. Vis. Image Underst..

[15]  Andreas Stafylopatis,et al.  Exploiting Wikipedia Knowledge for Conceptual Hierarchical Clustering of Documents , 2012, Comput. J..

[16]  Nuno A. Fonseca,et al.  Conceptual Clustering of Multi-Relational Data , 2011, ILP.

[17]  Huiying Wang,et al.  Study on frequent term set-based hierarchical clustering algorithm , 2011, 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD).

[18]  Gaël Varoquaux,et al.  A supervised clustering approach for fMRI-based inference of brain states , 2011, Pattern Recognit..

[19]  Steffen Staab,et al.  Dl-Link: a Conceptual Clustering Algorithm for Indexing Description Logics Knowledge Bases , 2010, Int. J. Semantic Comput..

[20]  S. Durga Bhavani,et al.  Performance Evaluation of an Efficient Frequent Item sets-Based Text Clustering Approach , 2010 .

[21]  Renu Dhir,et al.  A Frequent Concepts Based Document Clustering Algorithm , 2010 .

[22]  Christos Bouras,et al.  W-kmeans: Clustering News Articles Using WordNet , 2010, KES.

[23]  Vikram Pudi,et al.  Frequent Itemset Based Hierarchical Document Clustering Using Wikipedia as External Knowledge , 2010, KES.

[24]  Petra Perner,et al.  Fuzzy conceptual clustering , 2010, Qual. Reliab. Eng. Int..

[25]  John R. Kender,et al.  Hierarchical document clustering using local patterns , 2010, Data Mining and Knowledge Discovery.

[26]  Xijin Tang,et al.  Text clustering using frequent itemsets , 2010, Knowl. Based Syst..

[27]  Henry Anaya-Sánchez,et al.  A document clustering algorithm for discovering and describing topics , 2010, Pattern Recognit. Lett..

[28]  Frank S. C. Tseng,et al.  Mining fuzzy frequent itemsets for hierarchical document clustering , 2010, Inf. Process. Manag..

[29]  Athena Vakali,et al.  Fuzzy lattice reasoning (FLR) type neural computation for weighted graph partitioning , 2009, Neurocomputing.

[30]  David M. W. Powers,et al.  Characterization and evaluation of similarity measures for pairs of clusterings , 2009, Knowledge and Information Systems.

[31]  Oscar Cordón,et al.  A Multiobjective Evolutionary Conceptual Clustering Methodology for Gene Annotation Within Structural Databases: A Case of Study on the Gene Ontology Database , 2008, IEEE Transactions on Evolutionary Computation.

[32]  Joel Scanlan,et al.  DynamicWEB: Adapting to Concept Drift and Object Drift in COBWEB , 2008, Australasian Conference on Artificial Intelligence.

[33]  José Hernández-Orallo,et al.  Hierarchical Distance-Based Conceptual Clustering , 2008, ECML/PKDD.

[34]  Henry Anaya-Sánchez,et al.  A New Document Clustering Algorithm for Topic Discovering and Labeling , 2008, CIARP.

[35]  Jian Pei,et al.  Clustering by Pattern Similarity , 2008, Journal of Computer Science and Technology.

[36]  Amedeo Napoli,et al.  Many-Valued Concept Lattices for Conceptual Clustering and Information Retrieval , 2008, ECAI.

[37]  Nicola Fanizzi,et al.  Evolutionary Conceptual Clustering of Semantically Annotated Resources , 2007, International Conference on Semantic Computing (ICSC 2007).

[38]  Young-In Song,et al.  Smoothing Algorithm for N-Gram Model Using Agglutinative Characteristic of Korean , 2007, International Conference on Semantic Computing (ICSC 2007).

[39]  Jean-Gabriel Ganascia,et al.  Topic Extraction with AGAPE , 2007, ADMA.

[40]  Li Tian,et al.  A Hybrid Algorithm for Web Document Clustering Based on Frequent Term Sets and k-Means , 2007, APWeb/WAIM Workshops.

[41]  Rafael Berlanga Llavori,et al.  Topic discovery based on text mining techniques , 2007, Inf. Process. Manag..

[42]  Subodh Kumar Shah,et al.  A model-based conceptual clustering of moving objects in video surveillance , 2007, Electronic Imaging.

[43]  John R. Kender,et al.  High Quality, Efficient Hierarchical Document Clustering Using Closed Interesting Itemsets , 2006, Sixth International Conference on Data Mining (ICDM'06).

[44]  José Francisco Martínez Trinidad,et al.  Conceptual K-Means Algorithm Based on Complex Features , 2006, CIARP.

[45]  Ramayya Krishnan,et al.  Incremental hierarchical clustering of text documents , 2006, CIKM '06.

[46]  Analía Amandi,et al.  A conceptual clustering approach for user profiling in personal information agents , 2006, AI Commun..

[47]  José Francisco Martínez Trinidad,et al.  Conceptual K-Means Algorithm with Similarity Functions , 2005, CIARP.

[48]  Yan Jia,et al.  Parallel Mining of Top-K Frequent Itemsets in Very Large Text Database , 2005, WAIM.

[49]  Pilian He,et al.  A Study on Text Clustering Algorithms Based on Frequent Term Sets , 2005, ADMA.

[50]  Jiawei Han,et al.  Scalable construction of topic directory with nonparametric closed termset mining , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[51]  Henry Soldano,et al.  Alpha Galois lattices , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[52]  Ling Zhuang,et al.  A maximal frequent itemset approach for Web document clustering , 2004, The Fourth International Conference onComputer and Information Technology, 2004. CIT '04..

[53]  Wei Wang,et al.  OP-cluster: clustering by tendency in high dimensional space , 2003, Third IEEE International Conference on Data Mining.

[54]  Philip S. Yu,et al.  MaPle: a fast algorithm for maximal pattern-based clustering , 2003, Third IEEE International Conference on Data Mining.

[55]  Jian Pei,et al.  CLOSET+: searching for the best strategies for mining frequent closed itemsets , 2003, KDD '03.

[56]  Philip S. Yu,et al.  Enhanced biclustering on expression data , 2003, Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings..

[57]  José Ruiz-Shulcloper,et al.  RGC: A new conceptual clustering algorithm for mixed incomplete data sets , 2002 .

[58]  Daphne Koller,et al.  Decomposing Gene Expression into Cellular Processes , 2002, Pacific Symposium on Biocomputing.

[59]  Rafael Berlanga Llavori,et al.  On-line event and topic detection by using the compact sets clustering algorithm , 2002, J. Intell. Fuzzy Syst..

[60]  Michael K. Ng,et al.  Clustering categorical data sets using tabu search techniques , 2002, Pattern Recognit..

[61]  George Karypis,et al.  Evaluation of hierarchical clustering algorithms for document datasets , 2002, CIKM '02.

[62]  Martin Ester,et al.  Frequent term-based text clustering , 2002, KDD.

[63]  Roded Sharan,et al.  Discovering statistically significant biclusters in gene expression data , 2002, ISMB.

[64]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[65]  Céline Robardet,et al.  Comparison of Three Objective Functions for Conceptual Clustering , 2001, PKDD.

[66]  José Francisco Martínez Trinidad,et al.  LC: A Conceptual Clustering Algorithm , 2001, MLDM.

[67]  Johannes Gehrke,et al.  MAFIA: a maximal frequent itemset algorithm for transactional databases , 2001, Proceedings 17th International Conference on Data Engineering.

[68]  Aidong Zhang,et al.  Interrelated two-way clustering: an unsupervised approach for gene expression data analysis , 2001, Proceedings 2nd Annual IEEE International Symposium on Bioinformatics and Bioengineering (BIBE 2001).

[69]  Javier Béjar,et al.  Generality-Based Conceptual Clustering with Probabilistic Concepts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[70]  Vassilios Petridis,et al.  Fuzzy Lattice Neurocomputing (FLN) models , 2000, Neural Networks.

[71]  Andrea Califano,et al.  Analysis of Gene Expression Microarrays for Phenotype Classification , 2000, ISMB.

[72]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[73]  Jean-Daniel Zucker,et al.  Abstractions for Knowledge Organization of Relational Descriptions , 2000, SARA.

[74]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD '00.

[75]  G. Getz,et al.  Coupled two-way clustering analysis of gene microarray data. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[76]  José Francisco Martínez Trinidad,et al.  Extension to C-means Algorithm for the Use of Similarity Functions , 1999, PKDD.

[77]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[78]  Jitender S. Deogun,et al.  Conceptual clustering in information retrieval , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[79]  Jean-Gabriel Ganascia,et al.  Accounting for Domain Knowledge in the Construction of a Generalization Space , 1997, ICCS.

[80]  Myung-Mook Han,et al.  Applying Genetic Algorithm to Conceptual Clustering , 1997 .

[81]  Wesley W. Chu,et al.  An error-based conceptual clustering method for providing approximate query answers , 1996, CACM.

[82]  Slava M. Katz Distribution of content words and phrases in text and language modelling , 1996, Natural Language Engineering.

[83]  Chrisila C. Pettey,et al.  A hybrid conceptual clustering system , 1996, CSC '96.

[84]  H. Ralambondrainy,et al.  A conceptual version of the K-means algorithm , 1995, Pattern Recognit. Lett..

[85]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[86]  Tu Bao Ho,et al.  An Approach to Concept Formation Based on Formal Concept Analysis , 1995, IEICE Trans. Inf. Syst..

[87]  Rokia Missaoui,et al.  INCREMENTAL CONCEPT FORMATION ALGORITHMS BASED ON GALOIS (CONCEPT) LATTICES , 1995, Comput. Intell..

[88]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[89]  Fredrik Kilander,et al.  COBBIT - A Control Procedure for COBWEB in the Presence of Concept Drift , 1993, ECML.

[90]  Jan L. Talmon,et al.  An Analysis of the WITT Algorithm , 1993, Machine Learning.

[91]  M. Pazzani,et al.  Concept formation knowledge and experience in unsupervised learning , 1991 .

[92]  Steven J. Fenves,et al.  The formation and use of abstract concepts in design , 1991 .

[93]  Pat Langley,et al.  Constraints on Tree Structure in Concept Formation , 1991, IJCAI.

[94]  Kevin Thompson,et al.  Cobweb/3: A portable implementation , 1990 .

[95]  Pat Langley,et al.  Models of Incremental Concept Formation , 1990, Artif. Intell..

[96]  Pat Langley,et al.  An integrated cognitive architecture for autonomous agents , 1989 .

[97]  M. Hadzikadic,et al.  Concept Formation by Incremental Conceptual Clustering , 1989, IJCAI.

[98]  Stephen José Hanson,et al.  Conceptual Clustering, Categorization, and Polymorphy , 1989, Machine Learning.

[99]  Douglas H. Fisher,et al.  Knowledge Acquisition Via Incremental Conceptual Clustering , 1987, Machine Learning.

[100]  Bernhard Nordhausen,et al.  Conceptual Clustering Using Relational Information , 1986, AAAI.

[101]  Ryszard S. Michalski,et al.  Automated Construction of Classifications: Conceptual Clustering Versus Numerical Taxonomy , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[102]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[103]  J. Hartigan Direct Clustering of a Data Matrix , 1972 .

[104]  E. A. Feigenbaum,et al.  The simulation of verbal learning behavior , 1899, IRE-AIEE-ACM '61 (Western).

[105]  Jugal K. Kalita,et al.  Network Traffic Anomaly Detection and Prevention , 2017, Computer Communications and Networks.

[106]  Raudel Hernández-León,et al.  Classification rule-based models for malicious activity detection , 2017, Intell. Data Anal..

[107]  Jugal Kalita,et al.  Network Traffic Anomaly Detection Techniques and Systems , 2017 .

[108]  Jie Zhao,et al.  A review of moving object trajectory clustering algorithms , 2016, Artificial Intelligence Review.

[109]  José Francisco Martínez Trinidad,et al.  Mining patterns for clustering using unsupervised decision trees , 2015, Intell. Data Anal..

[110]  Preeti Mulay,et al.  Variant of COBWEB Clustering for Privacy Preservation in Cloud DB Querying , 2015 .

[111]  George A. Papakostas,et al.  Two Fuzzy Lattice Reasoning (FLR) Classifiers and their Application for Human Facial Expression Recognition , 2014, J. Multiple Valued Log. Soft Comput..

[112]  Sayan D. Sen,et al.  Real-time Optimal Selection of Multirobot Coalition Formation Algorithms using Conceptual Clustering , 2014 .

[113]  M. Graña,et al.  LATTICE COMPUTING: LATTICE THEORY BASED COMPUTATIONAL INTELLIGENCE , 2008 .

[114]  Soon Myoung Chung,et al.  Text document clustering based on frequent word meaning sequences , 2008, Data Knowl. Eng..

[115]  Jean-Gabriel Ganascia,et al.  Default Clustering with Conceptual Structures , 2007, J. Data Semant..

[116]  Marzena Kryszkiewicz,et al.  Hierarchical Document Clustering Using Frequent Closed Sets , 2006, Intelligent Information Systems.

[117]  W. D. Seeman,et al.  The CLUSTER 3 system for goal-oriented conceptual clustering : method and preliminary results , 2006 .

[118]  J. Pei,et al.  Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach , 2006, Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06).

[119]  Stephen Jose Hanson,et al.  Conceptual clustering, categorization, and polymorphy , 2004, Machine Learning.

[120]  Zhongmin Shi zshi Performance Improvement for Frequent Term-based Text Clustering Algorithm , 2004 .

[121]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[122]  Siu Cheung Hui,et al.  A Fuzzy FCA-based Approach to Conceptual Clustering for Automatic Generation of Concept Hierarchy on Uncertainty Data , 2004, CLA.

[123]  Andreas Hotho,et al.  Conceptual Clustering of Text Clusters , 2003 .

[124]  Benjamin C. M. Fung,et al.  Hierarchical Document Clustering using Frequent Itemsets , 2003, SDM.

[125]  L. Lazzeroni Plaid models for gene expression data , 2000 .

[126]  R. Tibshirani,et al.  Clustering methods for the analysis of DNA microarray data , 1999 .

[127]  Jerry B. Weinberg,et al.  ITERATE: A Conceptual Clustering Method for Knowledge Discovery in Databases , 1994 .

[128]  Claudio Carpineto,et al.  GALOIS: An Order-Theoretic Approach to Conceptual Clustering , 1993, ICML.

[129]  M. Chein,et al.  Conceptual graphs: fundamental notions , 1992 .

[130]  D. Duffy,et al.  A permutation-based algorithm for block clustering , 1991 .

[131]  Ryszard S. Michalski,et al.  Conceptual Clustering: Inventing Goal-Oriented Classifications of Structured Objects , 1986 .

[132]  Michael Lebowitz,et al.  Concept Learning in a Rich Input Domain: Generalization-Based Memory , 1984 .