Bryuno Function and the Standard Map

Abstract: For the standard map the homotopically non-trivial invariant curves of rotation number ω satisfying the Bryuno condition are shown to be analytic in the perturbative parameter ε, provided |ε| is small enough. The radius of convergence ρ(ω) of the Lindstedt series – sometimes called critical function of the standard map – is studied and the relation with the Bryuno function B(ω) is derived: the quantity |log ρ(ω) + 2 B (ω)| is proved to be bounded uniformly in ω.

[1]  Frank Harary,et al.  Graphical enumeration , 1973 .

[2]  L. H. Eliasson,et al.  Absolutely convergent series expansions for quasi periodic motions. , 1996 .

[3]  Guido Gentile,et al.  Lindstedt series, ultraviolet divergences and Moser's theorem , 1995, chao-dyn/9511009.

[4]  Guido Gentile,et al.  Scaling properties for the radius of convergence of a Lindstedt series: the standard map , 1999 .

[5]  G. Gentile,et al.  Majorant series convergence for twistless KAM tori , 1995, Ergodic Theory and Dynamical Systems.

[6]  Guido Gentile,et al.  Scaling properties for the radius of convergence of Lindstedt series: Generalized standard maps , 2000 .

[7]  Stefano Marmi,et al.  The Brjuno Functions and Their Regularity Properties , 1997 .

[8]  J. Wilbrink Erratic behavior of invariant circles in standard-like mappings , 1987 .

[9]  Scaling near resonances and complex rotation numbers for the standard map , 1994 .

[10]  A. Berretti,et al.  Natural boundaries for area-preserving twist maps , 1992 .

[11]  G. Gentile,et al.  Methods for the Analysis of the Lindstedt Series for Kam Tori and Renormalizability in Classical Mechanics a Review with Some Applications , 1995 .

[12]  G. Illies,et al.  Communications in Mathematical Physics , 2004 .

[13]  A. Davie,et al.  The critical function for the semistandard map , 1994 .

[14]  Alan Baker,et al.  DIOPHANTINE APPROXIMATION (Lecture Notes in Mathematics, 785) , 1981 .

[15]  Giovanni Gallavotti,et al.  Twistless KAM tori , 1993, chao-dyn/9306003.