Locality and Digital Quantum Simulation of Power-Law Interactions

The propagation of information in nonrelativistic quantum systems obeys a speed limit known as a Lieb-Robinson bound. We derive a new Lieb-Robinson bound for systems with interactions that decay with distance r as a power law, 1/rα. The bound implies an effective light cone tighter than all previous bounds. Our approach is based on a technique for approximating the time evolution of a system, which was first introduced as part of a quantum simulation algorithm by Haah et al., FOCS’18. To bound the error of the approximation, we use a known Lieb-Robinson bound that is weaker than the bound we establish. This result brings the analysis full circle, suggesting a deep connection between Lieb-Robinson bounds and digital quantum simulation. In addition to the new Lieb-Robinson bound, our analysis also gives an error bound for the Haah et al. quantum simulation algorithm when used to simulate power-law decaying interactions. In particular, we show that the gate count of the algorithm scales with the system size better than existing algorithms when α > 3D (where D is the number of dimensions).

[1]  N. Yao,et al.  Improved Lieb-Robinson bound for many-body Hamiltonians with power-law interactions , 2018, Physical Review A.

[2]  Minh C. Tran,et al.  Complexity phase diagram for interacting and long-range bosonic Hamiltonians , 2019, Physical review letters.

[3]  Jeongwan Haah,et al.  Product Decomposition of Periodic Functions in Quantum Signal Processing , 2018, Quantum.

[4]  David J. Luitz,et al.  Emergent locality in systems with power-law interactions , 2018, Physical Review A.

[5]  Minh C. Tran,et al.  Complexity of sampling as an order parameter , 2017, Physical review letters.

[6]  Jeongwan Haah,et al.  Quantum Algorithm for Simulating Real Time Evolution of Lattice Hamiltonians , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[7]  Dmitri Maslov,et al.  Toward the first quantum simulation with quantum speedup , 2017, Proceedings of the National Academy of Sciences.

[8]  A. Kitaev,et al.  The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual , 2017, 1711.08467.

[9]  Lieb-Robinson bounds on n-partite connected correlation functions. , 2017, Physical review. A.

[10]  Bill Fefferman,et al.  Complexity of sampling as an order parameter , 2017, ArXiv.

[11]  I. Chuang,et al.  Optimal Hamiltonian Simulation by Quantum Signal Processing. , 2016, Physical review letters.

[12]  Fernando G S L Brandão,et al.  Entanglement Area Laws for Long-Range Interacting Systems. , 2017, Physical review letters.

[13]  Sebastian Rubbert,et al.  Universal power-law decay of electron-electron interactions due to nonlinear screening in a Josephson junction array , 2016 .

[14]  M. Plenio,et al.  Dynamical error bounds for continuum discretisation via Gauss quadrature rules -- a Lieb-Robinson bound approach , 2015, 1508.07354.

[15]  M B Plenio,et al.  Simulating Bosonic Baths with Error Bars. , 2015, Physical review letters.

[16]  Michael Kastner,et al.  Interplay of soundcone and supersonic propagation in lattice models with power law interactions , 2015, 1502.05891.

[17]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[18]  Alexey V Gorshkov,et al.  Nearly linear light cones in long-range interacting quantum systems. , 2014, Physical review letters.

[19]  D. E. Chang,et al.  Quantum many-body models with cold atoms coupled to photonic crystals , 2013, Nature Photonics.

[20]  Alán Aspuru-Guzik,et al.  On the Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation , 2014, 1410.8159.

[21]  Maksym Serbyn,et al.  Quantum quenches in the many-body localized phase , 2014, 1408.4105.

[22]  Alexey V Gorshkov,et al.  Persistence of locality in systems with power-law interactions. , 2014, Physical review letters.

[23]  D. Pérez-García,et al.  Lieb-Robinson bounds for spin-boson lattice models and trapped ions. , 2013, Physical review letters.

[24]  Jens Eisert,et al.  Lieb-Robinson bounds and the simulation of time evolution of local observables in lattice systems , 2013, 1306.0716.

[25]  Jun Ye,et al.  Realizing a lattice spin model with polar molecules , 2013, 1305.5598.

[26]  P. Hayden,et al.  Towards the fast scrambling conjecture , 2011, Journal of High Energy Physics.

[27]  S. Michalakis,et al.  Stability of the Area Law for the Entropy of Entanglement , 2012, 1206.6900.

[28]  Michael J. Biercuk,et al.  Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins , 2012, Nature.

[29]  M. Cheneau,et al.  Propagation front of correlations in an interacting Bose gas , 2012, 1202.5558.

[30]  Immanuel Bloch,et al.  Light-cone-like spreading of correlations in a quantum many-body system , 2011, Nature.

[31]  Robert Sims,et al.  Dynamical Localization in Disordered Quantum Spin Systems , 2011, 1108.3811.

[32]  J. Sirker,et al.  Light cone renormalization and quantum quenches in one-dimensional Hubbard models , 2011, 1104.1643.

[33]  Light cone renormalization and quantum quenches in one-dimensional Hubbard models , 2012 .

[34]  Kihwan Kim,et al.  Quantum simulation of the transverse Ising model with trapped ions , 2011 .

[35]  B. Nachtergaele,et al.  Much Ado About Something: Why Lieb-Robinson bounds are useful , 2011, 1102.0835.

[36]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[37]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[38]  Efthimios Kaxiras,et al.  Properties of nitrogen-vacancy centers in diamond: the group theoretic approach , 2010, 1010.1338.

[39]  Isabeau Pr'emont-Schwarz,et al.  Lieb-Robinson bounds on the speed of information propagation , 2010 .

[40]  J. Eisert,et al.  Colloquium: Area laws for the entanglement entropy , 2010 .

[41]  I. Klich,et al.  Lieb-Robinson bounds for commutator-bounded operators , 2009, 0912.4544.

[42]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[43]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[44]  M. B. Hastings,et al.  Light Cone Matrix Product , 2009, 0903.3253.

[45]  D. Gross,et al.  Supersonic quantum communication. , 2008, Physical review letters.

[46]  Bruno Nachtergaele,et al.  Lieb-Robinson Bounds for Harmonic and Anharmonic Lattice Systems , 2007, 0712.3820.

[47]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[48]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[49]  T. Osborne Efficient approximation of the dynamics of one-dimensional quantum spin systems. , 2006, Physical review letters.

[50]  Y. Ogata,et al.  Propagation of Correlations in Quantum Lattice Systems , 2006, math-ph/0603064.

[51]  F. Verstraete,et al.  Lieb-Robinson bounds and the generation of correlations and topological quantum order. , 2006, Physical review letters.

[52]  Bruno Nachtergaele,et al.  Lieb-Robinson Bounds and the Exponential Clustering Theorem , 2005, math-ph/0506030.

[53]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[54]  M. Hastings,et al.  Spectral Gap and Exponential Decay of Correlations , 2005, math-ph/0507008.

[55]  Daniel A. Klain,et al.  Introduction to Geometric Probability , 1997 .

[56]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[57]  D. W. Robinson,et al.  The finite group velocity of quantum spin systems , 1972 .

[58]  A. Larkin,et al.  Quasiclassical Method in the Theory of Superconductivity , 1969 .