Use of freely available datasets and machine learning methods in predicting deforestation

[1]  Biswajeet Pradhan,et al.  A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India) , 2016, Environ. Model. Softw..

[2]  Daniel G. Brown,et al.  A review of current calibration and validation practices in land-change modeling , 2016, Environ. Model. Softw..

[3]  L. D. Estes,et al.  A platform for crowdsourcing the creation of representative, accurate landcover maps , 2016, Environ. Model. Softw..

[4]  Jing Deng,et al.  Hybrid Probabilistic Wind Power Forecasting Using Temporally Local Gaussian Process , 2016, IEEE Transactions on Sustainable Energy.

[5]  Gustau Camps-Valls,et al.  Mapping Leaf Area Index With a Smartphone and Gaussian Processes , 2015, IEEE Geoscience and Remote Sensing Letters.

[6]  Brian E. Robinson,et al.  Does secure land tenure save forests? A meta-analysis of the relationship between land tenure and tropical deforestation , 2014 .

[7]  Hichem Omrani,et al.  Land use changes modelling using advanced methods: Cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale , 2014 .

[8]  Bryan C. Pijanowski,et al.  Comparing three global parametric and local non-parametric models to simulate land use change in diverse areas of the world , 2014, Environ. Model. Softw..

[9]  Kurt McLaren,et al.  Assessing deforestation and fragmentation in a tropical moist forest over 68 years; the impact of roads and legal protection in the Cockpit Country, Jamaica , 2014 .

[10]  Zhanli Sun,et al.  Analyzing the drivers of tree planting in Yunnan, China, with Bayesian networks , 2014 .

[11]  Neil D. Burgess,et al.  Deforestation in an African biodiversity hotspot: extent, variation and the effectiveness of protected areas , 2013 .

[12]  Gregory P. Asner,et al.  Mapping Recent Deforestation and Forest Disturbance in Northeastern Madagascar , 2013 .

[13]  N. Kingston,et al.  World Database on Protected Areas (WDPA) , 2013 .

[14]  N. Mizoue,et al.  Changes in Determinants of Deforestation and Forest Degradation in Popa Mountain Park, Central Myanmar , 2013, Environmental Management.

[15]  Norman Fenton,et al.  Risk Assessment and Decision Analysis with Bayesian Networks , 2012 .

[16]  Luis Cayuela,et al.  Evidence of Incipient Forest Transition in Southern Mexico , 2012, PloS one.

[17]  Vasilios P. Papanastasis,et al.  Land Use Changes , 2012 .

[18]  Arika Ligmann-Zielinska,et al.  Comparing two approaches to land use/cover change modeling and their implications for the assessment of biodiversity loss in a deciduous tropical forest , 2012, Environ. Model. Softw..

[19]  R. Müller,et al.  Spatiotemporal modeling of the expansion of mechanized agriculture in the Bolivian lowland forests , 2011 .

[20]  Sasmita Sahoo,et al.  Assessing the extent and causes of forest degradation in India: Where do we stand? , 2010 .

[21]  Ralf Wieland,et al.  Classification in conservation biology: A comparison of five machine-learning methods , 2010, Ecol. Informatics.

[22]  Carl S. Smith,et al.  Predicting a 'tree change' in Australia's tropical savannas: Combining different types of models to understand complex ecosystem behaviour , 2010 .

[23]  Vincent Calcagno,et al.  glmulti: An R Package for Easy Automated Model Selection with (Generalized) Linear Models , 2010 .

[24]  M. Hudson,et al.  Prioritizing key biodiversity areas in Madagascar by including data on human pressure and ecosystem services , 2010 .

[25]  R. DeFries,et al.  Deforestation driven by urban population growth and agricultural trade in the twenty-first century , 2010 .

[26]  Carl E. Rasmussen,et al.  Gaussian Processes for Machine Learning (GPML) Toolbox , 2010, J. Mach. Learn. Res..

[27]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[28]  Markku Kanninen,et al.  Evaluating whether protected areas reduce tropical deforestation in Sumatra , 2009 .

[29]  Sebastian Bassi,et al.  Python Language Reference , 2009 .

[30]  Tonny J. Oyana,et al.  Mapping and spatial uncertainty analysis of forest vegetation carbon by combining national forest inventory data and satellite images , 2009 .

[31]  Haibo He,et al.  Learning from Imbalanced Data , 2009, IEEE Transactions on Knowledge and Data Engineering.

[32]  Edward A. Ellis,et al.  Is community-based forest management more effective than protected areas?: A comparison of land use/land cover change in two neighboring study areas of the Central Yucatan Peninsula, Mexico. , 2008 .

[33]  Jon C. Lovett,et al.  Predicting tree distributions in an East African biodiversity hotspot: model selection, data bias and envelope uncertainty , 2008 .

[34]  R. Real,et al.  AUC: a misleading measure of the performance of predictive distribution models , 2008 .

[35]  N. Dudley Guidelines for applying protected area management categories , 2008 .

[36]  Philippe Mayaux,et al.  Using remote sensing to inform conservation status assessment: Estimates of recent deforestation rates on New Britain and the impacts upon endemic birds , 2008 .

[37]  C. Bradshaw,et al.  Global evidence that deforestation amplifies flood risk and severity in the developing world , 2007 .

[38]  Laura Uusitalo,et al.  Advantages and challenges of Bayesian networks in environmental modelling , 2007 .

[39]  Hannes Isaak Reuter,et al.  An evaluation of void‐filling interpolation methods for SRTM data , 2007, Int. J. Geogr. Inf. Sci..

[40]  Omri Allouche,et al.  Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) , 2006 .

[41]  Ana M. Aguilera,et al.  Using principal components for estimating logistic regression with high-dimensional multicollinear data , 2006, Comput. Stat. Data Anal..

[42]  Can Ozan Tan,et al.  Predictive models in ecology: Comparison of performances and assessment of applicability , 2005, Ecol. Informatics.

[43]  Deepak K. Agarwal,et al.  Tropical deforestation in Madagascar: analysis using hierarchical, spatially explicit, Bayesian regression models , 2005 .

[44]  Jean-François Mas,et al.  Assessing protected area effectiveness using surrounding (buffer) areas environmentally similar to the target area , 2005, Environmental monitoring and assessment.

[45]  Jean-François Mas,et al.  Modelling deforestation using GIS and artificial neural networks , 2004, Environ. Model. Softw..

[46]  William J. McConnell,et al.  Physical and social access to land: spatio-temporal patterns of agricultural expansion in Madagascar , 2004 .

[47]  Ronald,et al.  Learning representations by backpropagating errors , 2004 .

[48]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[49]  S. Bergen,et al.  Predictors of deforestation in the Brazilian Amazon , 2002 .

[50]  E. Dinerstein,et al.  The Global 200: Priority ecoregions for global conservation , 2002 .

[51]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[52]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[53]  G. Powell,et al.  Terrestrial Ecoregions of the World: A New Map of Life on Earth , 2001 .

[54]  Eric F. Lambin,et al.  What drives tropical deforestation?: a meta-analysis of proximate and underlying causes of deforestation based on subnational case study evidence , 2001 .

[55]  David Lindley,et al.  Introduction to the Practice of Statistics , 1990, The Mathematical Gazette.

[56]  H. J. Arnold Introduction to the Practice of Statistics , 1990 .

[57]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.