Femtosecond pulse shaping by ultrathin plasmonic metasurfaces

In this work, a compact and ultrathin plasmonic metasurface is proposed for an ultrashort pulse shaping method in the optical regime based on linear filtering principles. A planar array of nanoplasmonic particles is employed to manipulate the transmission spectrum of propagating ultrashort pulses to shape its temporal characteristics. We demonstrate that the method is able to broaden, compress, and reshape the polarization of ultrashort pulses with great control over its characteristics by engineering the resonances of the ultrathin plasmonic metasurface.

[1]  Peter Horak,et al.  Femtosecond surface plasmon pulse propagation. , 2011, Optics letters.

[2]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[3]  Paul Ruchhoeft,et al.  Modelling of infrared bandpass filters using three-dimensional FDTD method , 2005 .

[4]  A. Weiner Ultrafast optical pulse shaping: A tutorial review , 2011 .

[5]  S. Fang,et al.  Ultrabroadband spectral amplitude modulation using a liquid crystal spatial light modulator with ultraviolet-to-near-infrared bandwidth. , 2010, Applied optics.

[6]  M. Wegener,et al.  Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial , 2006, Science.

[7]  M. Dantus,et al.  Femtosecond Nanoplasmonic Dephasing of Individual Silver Nanoparticles and Small Clusters. , 2015, The journal of physical chemistry letters.

[8]  Christian Strüber,et al.  Spatiotemporal control of nanooptical excitations , 2010, Proceedings of the National Academy of Sciences.

[9]  M. Kahrizi,et al.  Optical behaviour of thick gold and silver films with periodic circular nanohole arrays , 2012 .

[10]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[11]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[12]  A. Alú,et al.  Twisted optical metamaterials for planarized ultrathin broadband circular polarizers , 2012, Nature Communications.

[13]  Parametrically shaped femtosecond pulses in the nonlinear regime obtained by reverse propagation in an optical fiber. , 2012, Optics letters.

[14]  Harry A. Atwater,et al.  Plasmonic nanoparticle enhanced light absorption in GaAs solar cells , 2008 .

[15]  G. Steinmeyer,et al.  Ultrafast dynamics of surface plasmon polaritons in plasmonic metamaterials , 2006 .

[16]  H. Simon,et al.  Temporal pulse reshaping with surface waves. , 1994, Applied optics.

[17]  Shuangchun Wen,et al.  A wide bandgap plasmonic Bragg reflector. , 2008, Optics express.

[18]  Periklis Petropoulos,et al.  Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating , 2001 .

[19]  A. A. Fedyanin,et al.  Femtosecond pulse shaping with plasmonic crystals , 2015 .

[20]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[21]  V. Shalaev Optical negative-index metamaterials , 2007 .

[22]  David J. Bergman,et al.  Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems , 2004 .

[23]  Qing Huo Liu,et al.  Manipulating light absorption of graphene using plasmonic nanoparticles. , 2013, Nanoscale.

[24]  Nikolay I. Zheludev,et al.  Metamaterial polarization spectral filter: Isolated transmission line at any prescribed wavelength , 2011 .

[25]  Vadim Smirnov,et al.  Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses , 2014 .

[26]  Michael Bauer,et al.  Adaptive subwavelength control of nano-optical fields , 2007, Nature.

[27]  S. L. Stebbings,et al.  Generation of isolated attosecond extreme ultraviolet pulses employing nanoplasmonic field enhancement: optimization of coupled ellipsoids , 2011 .

[28]  Gerber,et al.  Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses , 1998, Science.

[29]  A. Weiner,et al.  Generation of terahertz-rate trains of femtosecond pulses by phase-only filtering. , 1990, Optics Letters.

[30]  Antoine Monmayrant,et al.  PhD TUTORIAL: A newcomer's guide to ultrashort pulse shaping and characterization , 2010 .

[31]  Dmitrii Yu Stepanov,et al.  Bragg grating fabrication with wide range coarse and fine wavelength control. , 2014, Optics express.

[32]  Ahmed H. Zewail,et al.  Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond† , 2000 .

[33]  Tie Jun Cui,et al.  Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation , 2012 .

[34]  Femtosecond pulse shaping using plasmonic snowflake nanoantennas , 2011 .

[35]  F. Baida Spatiotemporal sub-wavelength near-field light localization. , 2010, Optics express.

[36]  Walter Pfeiffer,et al.  Ultrafast adaptive optical near-field control , 2006 .

[37]  D. Zerulla,et al.  Highly efficient broadband ultrafast plasmonics. , 2013, Optics express.

[38]  A. Fedyanin,et al.  Magnetic field-controlled femtosecond pulse shaping by magnetoplasmonic crystals , 2013 .

[39]  José Dintinger,et al.  Enhanced Light Transmission through Subwavelength Holes , 2005 .

[40]  A. A. Fedyanin,et al.  Ultrafast polarization shaping with Fano plasmonic crystals. , 2011, Physical review letters.

[41]  A. Dechant,et al.  Femtosecond optical pulse propagation in subwavelength metallic slits , 2004 .

[42]  I. Malitson Interspecimen Comparison of the Refractive Index of Fused Silica , 1965 .

[43]  Nils Krebs,et al.  Pulse Compression of Ultrashort UV Pulses by Self-Phase Modulation in Bulk Material , 2013 .

[44]  Nikolay I. Zheludev,et al.  Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency , 2009 .

[45]  D. Bergman,et al.  Coherent control of femtosecond energy localization in nanosystems. , 2002, Physical review letters.

[46]  A. H. Zewail,et al.  Femtosecond laser control of a chemical reaction , 1992, Nature.