Properties of a Ternary Infinite Word
暂无分享,去创建一个
[1] J. Shallit,et al. Complement Avoidance in Binary Words , 2022, ArXiv.
[2] J. Shallit. The Logical Approach to Automatic Sequences , 2022 .
[3] Julien Cassaigne,et al. Almost everywhere balanced sequences of complexity 2n + 1 , 2021, Moscow Journal of Combinatorics and Number Theory.
[4] J. Shallit. Abelian Complexity and Synchronization , 2020, ArXiv.
[5] Jeffrey Shallit,et al. Subword complexity and power avoidance , 2018, Theor. Comput. Sci..
[6] J. Cassaigne,et al. A Set of Sequences of Complexity 2n+1 2 n + 1 , 2017, WORDS.
[7] Hamoon Mousavi,et al. Automatic Theorem Proving in Walnut , 2016, ArXiv.
[8] Jeffrey Shallit,et al. Decision algorithms for Fibonacci-automatic Words, I: Basic results , 2016, RAIRO Theor. Informatics Appl..
[9] Pascal Ochem,et al. Characterization of some binary words with few squares , 2015, Theor. Comput. Sci..
[10] Jeffrey Shallit,et al. Mechanical Proofs of Properties of the Tribonacci Word , 2014, WORDS.
[11] Gwénaël Richomme,et al. Abelian complexity of minimal subshifts , 2009, J. Lond. Math. Soc..
[12] Jacques Justin,et al. Episturmian words: a survey , 2008, RAIRO Theor. Informatics Appl..
[13] Ethan M. Coven,et al. Sequences with minimal block growth , 2005, Mathematical systems theory.
[14] Igor E. Shparlinski,et al. Recurrence Sequences , 2003, Mathematical surveys and monographs.
[15] Véronique Bruyère,et al. Bertrand Numeration Systems and Recognizability , 1997, Theor. Comput. Sci..
[16] Boris Solomyak,et al. Ergodic Theory of ℤ d Actions: On representation of integers in Linear Numeration Systems , 1996 .
[17] Filippo Mignosi,et al. Repetitions in the Fibonacci infinite word , 1992, RAIRO Theor. Informatics Appl..
[18] J. Berstel. Axel Thue''s papers on repetitions in words: a translation. In: Publications du LaCIM, vol. 20. U , 1992 .
[19] Aviezri S. Fraenkel,et al. Systems of numeration , 1983, 1983 IEEE 6th Symposium on Computer Arithmetic (ARITH).
[20] Juhani Karhumäki,et al. On cube-free ω-words generated by binary morphisms , 1983, Discret. Appl. Math..
[21] G. A. Hedlund,et al. Symbolic Dynamics II. Sturmian Trajectories , 1940 .
[22] Cristiano Maggi. ON SYNCHRONIZED SEQUENCES , 2022 .