Properties of a Ternary Infinite Word

We study the properties of the ternary infinite word p = 012102101021012101021012⋯, that is, the fixed point of the map h : 0 → 01, 1 → 21, 2 → 0. We determine its factor complexity, critical exponent, and prove that it is 2-balanced. We compute its abelian complexity and determine the lengths of its bispecial factors. Finally, we give a characterization of p in terms of avoided factors.

[1]  J. Shallit,et al.  Complement Avoidance in Binary Words , 2022, ArXiv.

[2]  J. Shallit The Logical Approach to Automatic Sequences , 2022 .

[3]  Julien Cassaigne,et al.  Almost everywhere balanced sequences of complexity 2n + 1 , 2021, Moscow Journal of Combinatorics and Number Theory.

[4]  J. Shallit Abelian Complexity and Synchronization , 2020, ArXiv.

[5]  Jeffrey Shallit,et al.  Subword complexity and power avoidance , 2018, Theor. Comput. Sci..

[6]  J. Cassaigne,et al.  A Set of Sequences of Complexity 2n+1 2 n + 1 , 2017, WORDS.

[7]  Hamoon Mousavi,et al.  Automatic Theorem Proving in Walnut , 2016, ArXiv.

[8]  Jeffrey Shallit,et al.  Decision algorithms for Fibonacci-automatic Words, I: Basic results , 2016, RAIRO Theor. Informatics Appl..

[9]  Pascal Ochem,et al.  Characterization of some binary words with few squares , 2015, Theor. Comput. Sci..

[10]  Jeffrey Shallit,et al.  Mechanical Proofs of Properties of the Tribonacci Word , 2014, WORDS.

[11]  Gwénaël Richomme,et al.  Abelian complexity of minimal subshifts , 2009, J. Lond. Math. Soc..

[12]  Jacques Justin,et al.  Episturmian words: a survey , 2008, RAIRO Theor. Informatics Appl..

[13]  Ethan M. Coven,et al.  Sequences with minimal block growth , 2005, Mathematical systems theory.

[14]  Igor E. Shparlinski,et al.  Recurrence Sequences , 2003, Mathematical surveys and monographs.

[15]  Véronique Bruyère,et al.  Bertrand Numeration Systems and Recognizability , 1997, Theor. Comput. Sci..

[16]  Boris Solomyak,et al.  Ergodic Theory of ℤ d Actions: On representation of integers in Linear Numeration Systems , 1996 .

[17]  Filippo Mignosi,et al.  Repetitions in the Fibonacci infinite word , 1992, RAIRO Theor. Informatics Appl..

[18]  J. Berstel Axel Thue''s papers on repetitions in words: a translation. In: Publications du LaCIM, vol. 20. U , 1992 .

[19]  Aviezri S. Fraenkel,et al.  Systems of numeration , 1983, 1983 IEEE 6th Symposium on Computer Arithmetic (ARITH).

[20]  Juhani Karhumäki,et al.  On cube-free ω-words generated by binary morphisms , 1983, Discret. Appl. Math..

[21]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[22]  Cristiano Maggi ON SYNCHRONIZED SEQUENCES , 2022 .