Semiconducting black phosphorus

Black phosphorus is a narrow-gap semiconductor newly attracting attention because of recent success in growing single crystals at a high temperature under a high pressure. This review covers recent research work on the preparation, the crystal structure, the band structure, the electrical and optical properties, and the superconductivity of black phosphorus.

[1]  K. Murase,et al.  Pressure Dependence of the Lattice Vibration in the Orthorhombic and Rhombohedral Structures of Black Phosphorus , 1981 .

[2]  M. Kobayashi,et al.  Optical Determination of Dielectric Constant in Black Phosphorus , 1985 .

[3]  S. Suga,et al.  Valence band and core-level photoemission spectra of black phosphorus single crystals , 1983 .

[4]  Y. Akahama,et al.  Growth of Large Single Crystals of Black Phosphorus under High Pressure , 1982 .

[5]  R. Keyes The Electrical Properties of Black Phosphorus , 1953 .

[6]  A. Morita,et al.  Electronic structure of black phosphorus studied by polarized soft-x-ray emission and absorption spectroscopy , 1984 .

[7]  Douglas M. Warschauer,et al.  Electrical and Optical Properties of Crystalline Black Phosphorus , 1963 .

[8]  Jerry Donohue The structures of the elements , 1974 .

[9]  直樹 佐藤,et al.  高温,高圧下における黒リンの合成,単結晶の育成とその物理的および化学的性質 , 1981 .

[10]  Shoichi Endo,et al.  Electrical Properties of Black Phosphorus Single Crystals , 1983 .

[11]  Y. Maruyama,et al.  Electronic structure of black phosphorus studied by X-ray photoelectron spectroscopy , 1982 .

[12]  K. Hall,et al.  A least-squares method for reduction of burnett data to compressibility factors and virial coefficients , 1970 .

[13]  T. G. Worlton,et al.  Effect of pressure on bonding in black phosphorus , 1979 .

[14]  Y. Akahama,et al.  Far-Infrared Cyclotron Resonance Absorptions in Black Phosphorus Single Crystals , 1983 .

[15]  V. N. Ovsyuk,et al.  Substrate bias effects on the second subband occupation in the electron inversion layer on the (100) silicon surface , 1984 .

[16]  H. Fukuyama Excitonic Superconductivity along Dislocations , 1982 .

[17]  Akira Morita,et al.  Electronic Structure of Black Phosphorus in Tight Binding Approach , 1981 .

[18]  P. W. Bridgman Electrical Resistances and Volume Changes up to 20,000 Kg./Cm. , 1935, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. Sugai,et al.  Raman and infrared reflection spectroscopy in black phosphorus , 1985 .

[20]  Y. Kondo,et al.  Infrared Optical Absorption Due to One and Two Phonon Processes in Black Phosphorus , 1983 .

[21]  A. Morita,et al.  Electronic Structure of Black Phosphorus in Self-Consistent Pseudopotential Approach , 1982 .

[22]  J. C. Slater,et al.  Symmetry and Free Electron Properties of the Gallium Energy Bands , 1962 .

[23]  D. Schiferl Pseudopotential crystal-structure stability calculations on black phosphorous as a function of pressure , 1979 .

[24]  M. Okajima,et al.  Electrical Investigation of Phase Transition in Black Phosphorus under High Pressure , 1984 .

[25]  S. Rundqvist,et al.  Refinement of the crystal structure of black phosphorus , 1965 .

[26]  K. Tachikawa,et al.  Anomalous superconductivity in black phosphorus under high pressures , 1984 .

[27]  L. Ley,et al.  Valence-band structures of phosphorus allotropes , 1983 .

[28]  J. C. Jamieson Crystal Structures Adopted by Black Phosphorus at High Pressures , 1963, Science.

[29]  S. Suga,et al.  Core-exciton induced resonant photoemission in the covalent semiconductor black phosphorus , 1984 .

[30]  P. W. Bridgman TWO NEW MODIFICATIONS OF PHOSPHORUS. , 1914 .

[31]  A. Morita,et al.  Lattice dynamics of black phosphorus , 1982 .

[32]  T. Kikegawa,et al.  An X‐ray diffraction study of lattice compression and phase transition of crystalline phosphorus , 1983 .

[33]  T. Takahashi,et al.  Band structure of black phosphorus studied by angle-resolved ultraviolet photoemission spectroscopy , 1983 .