Single-molecule mechanochemical sensing using DNA origami nanostructures.

While single-molecule sensing offers the ultimate detection limit, its throughput is often restricted as sensing events are carried out one at a time in most cases. 2D and 3D DNA origami nanostructures are used as expanded single-molecule platforms in a new mechanochemical sensing strategy. As a proof of concept, six sensing probes are incorporated in a 7-tile DNA origami nanoassembly, wherein binding of a target molecule to any of these probes leads to mechanochemical rearrangement of the origami nanostructure, which is monitored in real time by optical tweezers. Using these platforms, 10 pM platelet-derived growth factor (PDGF) are detected within 10 minutes, while demonstrating multiplex sensing of the PDGF and a target DNA in the same solution. By tapping into the rapid development of versatile DNA origami nanostructures, this mechanochemical platform is anticipated to offer a long sought solution for single-molecule sensing with improved throughput.

[1]  Hao Yan,et al.  Challenges and opportunities for structural DNA nanotechnology. , 2011, Nature nanotechnology.

[2]  S. Balasubramanian,et al.  A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. , 2011, Nature chemistry.

[3]  Harish Chandran,et al.  An autonomously self-assembling dendritic DNA nanostructure for target DNA detection. , 2013, Biotechnology journal.

[4]  Hao Yan,et al.  Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays , 2008, Science.

[5]  H. Clausen‐Schaumann,et al.  Mechanochemistry: the mechanical activation of covalent bonds. , 2005, Chemical reviews.

[6]  S. Balasubramanian,et al.  Mechanochemical Properties of Individual Human Telomeric RNA (TERRA) G‐Quadruplexes , 2013, Chembiochem : a European journal of chemical biology.

[7]  C. Bustamante,et al.  The mechanochemistry of molecular motors. , 2000, Biophysical journal.

[8]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[9]  H. Mao,et al.  Mechanical affinity as a new metrics to evaluate binding events , 2013 .

[10]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[11]  Matthias Rief,et al.  Dynamic force sensing of filamin revealed in single-molecule experiments , 2012, Proceedings of the National Academy of Sciences.

[12]  B. Grzybowski,et al.  Mechanoradicals created in "polymeric sponges" drive reactions in aqueous media. , 2012, Angewandte Chemie.

[13]  M. Rief,et al.  Rigid DNA Beams for High-Resolution Single-Molecule Mechanics** , 2013, Angewandte Chemie.

[14]  S. Basu,et al.  Coexistence of an ILPR i-motif and a partially folded structure with comparable mechanical stability revealed at the single-molecule level. , 2010, Journal of the American Chemical Society.

[15]  D. Y. Zhang,et al.  Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA , 2007, Science.

[16]  Cheng-Zhong Zhang,et al.  Mechanoenzymatic Cleavage of the Ultralarge Vascular Protein von Willebrand Factor , 2009, Science.

[17]  S. Craig Mechanochemistry: A tour of force , 2012, Nature.

[18]  H. Mao,et al.  Detection of single nucleotide polymorphism using tension-dependent stochastic behavior of a single-molecule template. , 2011, Journal of the American Chemical Society.

[19]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[20]  Sanjay Tyagi,et al.  Molecular Beacons: Probes that Fluoresce upon Hybridization , 1996, Nature Biotechnology.

[21]  H. Sugiyama,et al.  Programmed Two-dimensional Self- Assembly of Multiple Dna Origami Jigsaw Pieces Keywords: Dna Origami · Programmed 2d Self-assembly · Jigsaw Pieces · Nanotechnology · Fast-scanning Atomic Force Microscopy , 2022 .

[22]  H. Rothuizen,et al.  Translating biomolecular recognition into nanomechanics. , 2000, Science.

[23]  J. Reif,et al.  Logical computation using algorithmic self-assembly of DNA triple-crossover molecules , 2000, Nature.

[24]  Nebojsa Janjic,et al.  Inhibitory DNA ligands to platelet-derived growth factor B-chain. , 1996, Biochemistry.

[25]  Jibin Abraham Punnoose,et al.  Yoctoliter thermometry for single-molecule investigations: a generic bead-on-a-tip temperature-control module. , 2014, Angewandte Chemie.

[26]  Weihong Tan,et al.  A Single DNA Molecule Nanomotor , 2002 .

[27]  N. Seeman DNA in a material world , 2003, Nature.

[28]  Jeffrey S. Moore,et al.  Polymer mechanochemistry: techniques to generate molecular force via elongational flows. , 2013, Chemical Society reviews.

[29]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[30]  Mara Prentiss,et al.  Massively parallel adhesion and reactivity measurements using simple and inexpensive magnetic tweezers , 2002 .

[31]  R. Seidel,et al.  Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. , 2011, Nano letters.

[32]  Jeremy M. Lenhardt,et al.  From molecular mechanochemistry to stress-responsive materials , 2011 .

[33]  Arivazhagan Rajendran,et al.  Einzelmolekülanalysen mithilfe von DNA‐Origami , 2012 .

[34]  S. Basu,et al.  ILPR G-quadruplexes formed in seconds demonstrate high mechanical stabilities. , 2009, Journal of the American Chemical Society.

[35]  Christoph Weder,et al.  Mechanochemistry: Polymers react to stress , 2009, Nature.

[36]  Hao Yan,et al.  DNA Origami with Complex Curvatures in Three-Dimensional Space , 2011, Science.

[37]  Masayuki Endo,et al.  Single-molecule analysis using DNA origami. , 2012, Angewandte Chemie.

[38]  L. Steinbock,et al.  Measuring single small molecule binding via rupture forces of a split aptamer. , 2011, Journal of the American Chemical Society.

[39]  C. Bielawski,et al.  A mechanochemical approach to deracemization. , 2012, Angewandte Chemie.

[40]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[41]  H. Mao,et al.  Single-molecule measurements of the binding between small molecules and DNA aptamers. , 2012, Analytical chemistry.

[42]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.