Simulation of simply cross correlated random fields by series expansion methods

A practical framework for generating cross correlated fields with a specified marginal distribution function, an autocorrelation function and cross correlation coefficients is presented in the paper. The contribution promotes a recent journal paper [1]. The approach relies on well known series expansion methods for simulation of a Gaussian random field. The proposed method requires all cross correlated fields over the domain to share an identical autocorrelation function and the cross correlation structure between each pair of simulated fields to be simply defined by a cross correlation coefficient. Such relations result in specific properties of eigenvectors of covariance matrices of discretized field over the domain. These properties are used to decompose the eigenproblem which must normally be solved in computing the series expansion into two smaller eigenproblems. Such decomposition represents a significant reduction of computational effort. Non-Gaussian components of a multivariate random field are proposed to be simulated via memoryless transformation of underlying Gaussian random fields for which the Nataf model is employed to modify the correlation structure. In this method, the autocorrelation structure of each field is fulfilled exactly while the cross correlation is only approximated. The associated errors can be computed before performing simulations and it is shown that the errors happen especially in the cross correlation between distant points and that they are negligibly small in practical situations.

[1]  Drahomír Novák,et al.  Simulation of random fields for stochastic finite element analyses , 2005 .

[2]  Masanobu Shinozuka,et al.  Weighted Integral Method. II: Response Variability and Reliability , 1991 .

[3]  Fabio Casciati,et al.  Mathematical Models for Structural Reliability Analysis , 1996 .

[4]  A. Olsson,et al.  On Latin Hypercube Sampling for Stochastic Finite Element Analysis , 1999 .

[5]  V. Rokhlin Rapid solution of integral equations of classical potential theory , 1985 .

[6]  Mircea Grigoriu,et al.  On the accuracy of the polynomial chaos approximation for random variables and stationary stochastic processes. , 2003 .

[7]  Rostislav Chudoba,et al.  Stochastic modeling of multi-filament yarns. I. Random properties within the cross-section and size effect , 2006 .

[8]  D. Novák,et al.  Statistical correlation in stratified sampling , 2003 .

[9]  D. Novák,et al.  CORRELATION CONTROL IN SMALL-SAMPLE MONTE CARLO TYPE SIMULATIONS I: A SIMULATED ANNEALING APPROACH , 2009 .

[10]  M. Grigoriu Simulation of stationary non-Gaussian translation processes , 1998 .

[11]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[12]  Drahomír Novák,et al.  Error assessment for wind histories generated by autoregressive method , 1995 .

[13]  Miroslav Vořechovský,et al.  Interplay of size effects in concrete specimens under tension studied via computational stochastic fracture mechanics , 2007 .

[14]  A. Kiureghian,et al.  OPTIMAL DISCRETIZATION OF RANDOM FIELDS , 1993 .

[15]  Alan L. Andrew,et al.  Eigenvectors of certain matrices , 1973 .

[16]  H. Matthies,et al.  Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic finite elements , 1997 .

[17]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[18]  Erik H. Vanmarcke,et al.  Random Fields: Analysis and Synthesis. , 1985 .

[19]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[20]  Christian Bucher,et al.  A contribution to the SFE-based reliability assessment of nonlinear structures under dynamic loading , 1995 .

[21]  M. Shinozuka,et al.  Digital Generation of Non‐Gaussian Stochastic Fields , 1988 .

[22]  Masanobu Shinozuka,et al.  Simulation of Stochastic Fields by Statistical Preconditioning , 1990 .

[23]  Miroslav Vořechovský Correlated Random Variables in Probabilistic Simulation , 2002 .

[24]  R. Iman,et al.  A distribution-free approach to inducing rank correlation among input variables , 1982 .

[25]  M. Grigoriu Crossings of non-gaussian translation processes , 1984 .

[26]  George Deodatis,et al.  Weighted Integral Method. I: Stochastic Stiffness Matrix , 1991 .

[27]  Mircea Grigoriu,et al.  STOCHASTIC FINITE ELEMENT ANALYSIS OF SIMPLE BEAMS , 1983 .

[28]  R. Ghanem,et al.  Polynomial chaos decomposition for the simulation of non-gaussian nonstationary stochastic processes , 2002 .

[29]  Armen Der Kiureghian,et al.  The stochastic finite element method in structural reliability , 1988 .

[30]  O. Ditlevsen Dimension Reduction and Discretization in Stochastic Problems by Regression Method , 1996 .

[31]  George Deodatis,et al.  Simulation of Highly Skewed Non-Gaussian Stochastic Processes , 2001 .

[32]  S. Madanat,et al.  Computational modeling of statistical size effect in quasibrittle structures , 2003 .

[33]  D. Huntington,et al.  Improvements to and limitations of Latin hypercube sampling , 1998 .

[34]  Wing Kam Liu,et al.  Random field finite elements , 1986 .

[35]  Mircea Grigoriu,et al.  Applied non-Gaussian processes : examples, theory, simulation, linear random vibration, and MATLAB solutions , 1995 .

[36]  Drahomír Novák,et al.  Efficient random fields simulation for stochastic FEM analyses , 2003 .

[37]  B. Ellingwood,et al.  Error Measure for Reliability Studies Using Reduced Variable Set , 1995 .

[38]  Bruce R. Ellingwood,et al.  Orthogonal Series Expansions of Random Fields in Reliability Analysis , 1994 .

[39]  N. Nishimura Fast multipole accelerated boundary integral equation methods , 2002 .

[40]  Yu Hen Hu,et al.  Toeplitz eigensystem solver , 1985, IEEE Trans. Acoust. Speech Signal Process..

[41]  G. Deodatis Simulation of Ergodic Multivariate Stochastic Processes , 1996 .

[42]  Rostislav Chudoba,et al.  Stochastic modeling of multi-filament yarns : II. Random properties over the length and size effect , 2006 .

[43]  Rostislav Chudoba,et al.  Adaptive probabilistic modeling of localization, failure and size effect of quasi-brittle materials , 2006 .

[44]  K. Phoon,et al.  Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin scheme , 2002 .

[45]  K. Phoon,et al.  Simulation of strongly non-Gaussian processes using Karhunen–Loeve expansion , 2005 .

[46]  Mircea Grigoriu,et al.  Evaluation of Karhunen–Loève, Spectral, and Sampling Representations for Stochastic Processes , 2006 .

[47]  Mircea Grigoriu Spectral Representation for a Class of Non-Gaussian Processes , 2004 .

[48]  C. Letchford,et al.  Simulation of Multivariate Stationary Gaussian Stochastic Processes: Hybrid Spectral Representation and Proper Orthogonal Decomposition Approach , 2005 .

[49]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[50]  Christian Soize,et al.  Non-Gaussian simulation using Hermite polynomial expansion: convergences and algorithms , 2002 .

[51]  A. W. Hendry International conference on structural safety and reliability: Edited A.M. Freudenthal, Pergamon Press, 1972 , 1973 .

[52]  M. Shinozuka,et al.  Simulation of Stochastic Processes by Spectral Representation , 1991 .

[53]  Ronald L. Iman,et al.  Risk methodology for geologic disposal of radioactive waste: small sample sensitivity analysis techniques for computer models, with an application to risk assessment , 1980 .

[54]  A. Kiureghian,et al.  Multivariate distribution models with prescribed marginals and covariances , 1986 .

[55]  Wing Kam Liu,et al.  Probabilistic finite elements for nonlinear structural dynamics , 1986 .

[56]  Drahomír Novák,et al.  Asymptotic Prediction of Energetic-Statistical Size Effect from Deterministic Finite-Element Solutions , 2007 .

[57]  George Deodatis,et al.  Bounds on Response Variability of Stochastic Finite Element Systems , 1990 .

[58]  J. O. Coleman A simple FIR-filter interpretation of the extreme eigenvalues of a Toeplitz autocorrelation matrix , 2000 .

[59]  Michel Loève,et al.  Probability Theory I , 1977 .

[60]  R. Ghanem,et al.  Stochastic Finite Element Expansion for Random Media , 1989 .

[61]  Masanobu Shinozuka,et al.  Simulation of Multivariate and Multidimensional Random Processes , 1971 .