Concept-Based Approach to Word-Sense Disambiguation

The task of automatically determining the correct sense of a polysemous word has remained a challenge to this day. In our research, we introduce Concept-Based Disambiguation (CBD), a novel framework that utilizes recent semantic analysis techniques to represent both the context of the word and its senses in a high-dimensional space of natural concepts. The concepts are retrieved from a vast encyclopedic resource, thus enriching the disambiguation process with large amounts of domain-specific knowledge. In such concept-based spaces, more comprehensive measures can be applied in order to pick the right sense. Additionally, we introduce a novel representation scheme, denoted anchored representation, that builds a more specific text representation associated with an anchoring word. We evaluate our framework and show that the anchored representation is more suitable to the task of wordsense disambiguation (WSD). Additionally, we show that our system is superior to state-of-the-art methods when evaluated on domain-specific corpora, and competitive with recent methods when evaluated on a general corpus.

[1]  Yorick Wilks,et al.  Providing machine tractable dictionary tools , 1990, Machine Translation.

[2]  Mirella Lapata,et al.  An Experimental Study of Graph Connectivity for Unsupervised Word Sense Disambiguation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Yee Whye Teh,et al.  NUS-ML: Improving Word Sense Disambiguation Using Topic Features , 2007, SemEval@ACL.

[4]  Steffen Staab,et al.  Towards the self-annotating web , 2004, WWW '04.

[5]  Paola Velardi,et al.  Structural semantic interconnections: a knowledge-based approach to word sense disambiguation , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Montse Cuadros,et al.  Quality Assessment of Large Scale Knowledge Resources , 2006, EMNLP.

[7]  Roberto Navigli,et al.  SemEval-2007 Task 07: Coarse-Grained English All-Words Task , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[8]  Roberto Navigli,et al.  Using Cycles and Quasi-Cycles to Disambiguate Dictionary Glosses , 2009, EACL.

[9]  Evgeniy Gabrilovich,et al.  Wikipedia-based Semantic Interpretation for Natural Language Processing , 2014, J. Artif. Intell. Res..

[10]  Simone Paolo Ponzetto,et al.  Knowledge Derived From Wikipedia For Computing Semantic Relatedness , 2007, J. Artif. Intell. Res..

[11]  Patrick Pantel,et al.  Ontologizing Semantic Relations , 2006, ACL.

[12]  Ted Pedersen,et al.  A Decision Tree of Bigrams is an Accurate Predictor of Word Sense , 2001, NAACL.

[13]  Suresh Manandhar,et al.  Dynamic and Static Prototype Vectors for Semantic Composition , 2011, IJCNLP.

[14]  Diana McCarthy,et al.  Domain-Speci(cid:12)c Sense Distributions and Predominant Sense Acquisition , 2022 .

[15]  Ming-Wei Chang,et al.  Importance of Semantic Representation: Dataless Classification , 2008, AAAI.

[16]  Hwee Tou Ng,et al.  Integrating Multiple Knowledge Sources to Disambiguate Word Sense: An Exemplar-Based Approach , 1996, ACL.

[17]  Julie Weeds,et al.  Finding Predominant Word Senses in Untagged Text , 2004, ACL.

[18]  Dan I. Moldovan,et al.  Automatic Discovery of Part-Whole Relations , 2006, CL.

[19]  Regina Barzilay,et al.  Automatically Generating Wikipedia Articles: A Structure-Aware Approach , 2009, ACL.

[20]  Martha Palmer,et al.  SemEval-2007 Task-17: English Lexical Sample, SRL and All Words , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[21]  John C. Mallery Thinking About Foreign Policy: Finding an Appropriate Role for Artificially Intelligent Computers , 1988 .

[22]  Martha Palmer,et al.  The English all-words task , 2004, SENSEVAL@ACL.

[23]  David Yarowsky,et al.  Unsupervised Word Sense Disambiguation Rivaling Supervised Methods , 1995, ACL.

[24]  Montse Cuadros,et al.  KnowNet: Building a Large Net of Knowledge from the Web , 2008, COLING.

[25]  Diana McCarthy,et al.  Sussx: WSD using Automatically Acquired Predominant Senses , 2007, SemEval@ACL.

[26]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[27]  German Rigau,et al.  GPLSI: Word Coarse-grained Disambiguation aided by Basic Level Concepts , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[28]  Michael Strube,et al.  Decoding Wikipedia Categories for Knowledge Acquisition , 2008, AAAI.

[29]  Silviu Cucerzan,et al.  Large-Scale Named Entity Disambiguation Based on Wikipedia Data , 2007, EMNLP.

[30]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[31]  Evgeniy Gabrilovich,et al.  A word at a time: computing word relatedness using temporal semantic analysis , 2011, WWW.

[32]  Eneko Agirre,et al.  Personalizing PageRank for Word Sense Disambiguation , 2009, EACL.

[33]  Hwee Tou Ng,et al.  Exploiting Parallel Texts for Word Sense Disambiguation: An Empirical Study , 2003, ACL.

[34]  Ted Pedersen,et al.  Extended Gloss Overlaps as a Measure of Semantic Relatedness , 2003, IJCAI.

[35]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[36]  Alistair Moffat,et al.  Exploring the similarity space , 1998, SIGF.

[37]  David N. Milne Computing Semantic Relatedness using Wikipedia Link Structure , 2007 .

[38]  Rada Mihalcea,et al.  Wikify!: linking documents to encyclopedic knowledge , 2007, CIKM '07.

[39]  Simone Paolo Ponzetto,et al.  Knowledge-Rich Word Sense Disambiguation Rivaling Supervised Systems , 2010, ACL.

[40]  Marti A. Hearst Automatic Acquisition of Hyponyms from Large Text Corpora , 1992, COLING.

[41]  Ian H. Witten,et al.  An effective, low-cost measure of semantic relatedness obtained from Wikipedia links , 2008 .

[42]  Razvan C. Bunescu,et al.  Using Encyclopedic Knowledge for Named entity Disambiguation , 2006, EACL.

[43]  Evgeniy Gabrilovich,et al.  Concept-Based Feature Generation and Selection for Information Retrieval , 2008, AAAI.

[44]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[45]  Rada Mihalcea,et al.  Using Wikipedia for Automatic Word Sense Disambiguation , 2007, NAACL.

[46]  Evgeniy Gabrilovich,et al.  Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis , 2007, IJCAI.

[47]  Evgeniy Gabrilovich,et al.  Feature Generation for Text Categorization Using World Knowledge , 2005, IJCAI.

[48]  Benno Stein,et al.  A Wikipedia-Based Multilingual Retrieval Model , 2008, ECIR.

[49]  Xiaojun Wan,et al.  The earth mover's distance as a semantic measure for document similarity , 2005, CIKM '05.

[50]  Hwee Tou Ng,et al.  NUS-PT: Exploiting Parallel Texts for Word Sense Disambiguation in the English All-Words Tasks , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[51]  George A. Miller,et al.  A Semantic Concordance , 1993, HLT.

[52]  Simone Paolo Ponzetto,et al.  WikiRelate! Computing Semantic Relatedness Using Wikipedia , 2006, AAAI.

[53]  Rakesh Gupta,et al.  Text Categorization with Knowledge Transfer from Heterogeneous Data Sources , 2008, AAAI.

[54]  Evgeniy Gabrilovich,et al.  Overcoming the Brittleness Bottleneck using Wikipedia: Enhancing Text Categorization with Encyclopedic Knowledge , 2006, AAAI.

[55]  Roberto Navigli,et al.  Meaningful Clustering of Senses Helps Boost Word Sense Disambiguation Performance , 2006, ACL.

[56]  Iryna Gurevych,et al.  What to be? - Electronic Career Guidance Based on Semantic Relatedness , 2007, ACL.

[57]  Jean Véronis,et al.  HyperLex: lexical cartography for information retrieval , 2004, Comput. Speech Lang..

[58]  Diana McCarthy,et al.  Disambiguating Nouns, Verbs, and Adjectives Using Automatically Acquired Selectional Preferences , 2003, CL.

[59]  Philip G. Edmonds Designing a task for SENSEVAL-2 , 2000 .

[60]  Eneko Agirre,et al.  Learning class-to-class selectional preferences , 2001, CoNLL.

[61]  Rada Mihalcea,et al.  Building a Sense Tagged Corpus with Open Mind Word Expert , 2002, SENSEVAL.

[62]  Jennifer Widom,et al.  Exploiting hierarchical domain structure to compute similarity , 2003, TOIS.

[63]  R. Darnell Translation , 1873, The Indian medical gazette.

[64]  Rada Mihalcea,et al.  Cross-lingual Semantic Relatedness Using Encyclopedic Knowledge , 2009, EMNLP.

[65]  Simone Paolo Ponzetto,et al.  Deriving a Large-Scale Taxonomy from Wikipedia , 2007, AAAI.

[66]  Daniel Jurafsky,et al.  Semantic Taxonomy Induction from Heterogenous Evidence , 2006, ACL.

[67]  Ted Pedersen,et al.  WordNet::Similarity - Measuring the Relatedness of Concepts , 2004, NAACL.

[68]  Pavel Velikhov,et al.  Semantic Relatedness Metric for Wikipedia Concepts Based on Link Analysis and its Application to Word Sense Disambiguation , 2008, SYRCoDIS.

[69]  Steffen Staab,et al.  Explicit Versus Latent Concept Models for Cross-Language Information Retrieval , 2009, IJCAI.

[70]  George A. Miller,et al.  WordNet 2 - A Morphologically and Semantically Enhanced Resource , 1999 .

[71]  Paolo Rosso,et al.  UPV-WSD : Combining different WSD Methods by means of Fuzzy Borda Voting , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[72]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[73]  Marti A. Hearst Noun Homograph Disambiguation Using Local Context in Large Text Corpora , 1991 .

[74]  Michael E. Lesk,et al.  Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone , 1986, SIGDOC '86.

[75]  Andrew Bennett,et al.  LCC-WSD: System Description for English Coarse Grained All Words Task at SemEval 2007 , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[76]  Evgeniy Gabrilovich,et al.  Concept-Based Information Retrieval Using Explicit Semantic Analysis , 2011, TOIS.

[77]  Wei Ding,et al.  A Fully Unsupervised Word Sense Disambiguation Method Using Dependency Knowledge , 2009, HLT-NAACL.