STELLAR POPULATION SYNTHESIS BASED MODELING OF THE MILKY WAY USING ASTEROSEISMOLOGY OF 13,000 KEPLER RED GIANTS

With current space-based missions it is now possible to obtain age-sensitive asteroseismic information for tens of thousands of red giants. This provides a promising opportunity to study the Galactic structure and evolution. We use asteroseismic data of red giants, observed by Kepler, to test the current theoretical framework of modelling the Galaxy based on population synthesis modeling and the use of asteroseismic scaling relations for giants. We use the open source code Galaxia to model the Milky Way and find the distribution of the masses predicted by Galaxia to be systematically offset with respect to the seismically-inferred observed masses. The Galactic model overestimates the number of low mass stars, and these stars are predominantly old and of low metallicity. Using corrections to the $\Delta \nu$ scaling relation suggested by stellar models (available for download) significantly reduces the disagreement between predicted and observed masses. For a few cases where non-seismic mass estimates are available, the corrections to $\Delta \nu$ also improve the agreement between seismic and non-seismic mass estimates. The disagreement between predictions of the Galactic model and the observations is most pronounced for stars with ${\rm [Fe/H]} 0$ or for $T_{\rm eff}>4700$ K. Altering the star formation rate in order to suppress stars older than 10 Gyr improves the agreement for mass but leads to inconsistent color distributions. We also tested the predictions of the TRILEGAL Galactic model. However, unlike {\sl Galaxia}, it had difficulties in reproducing the photometric properties of the Kepler Input Catalog because it overestimates the number of blue stars. We conclude that either the scaling relations and/or the Galactic models need to be revised to reconcile predictions of theory with asteroseismic observations.

[1]  D. Stello,et al.  ASTEROSEISMIC CLASSIFICATION OF STELLAR POPULATIONS AMONG 13,000 RED GIANTS OBSERVED BY KEPLER , 2013, 1302.0858.

[2]  H. R. Coelho,et al.  A test of the asteroseismic numax scaling relation for solar-like oscillations in main-sequence and sub-giant stars , 2015, 1505.06087.

[3]  T. Beers,et al.  TESTING THE ASTEROSEISMIC MASS SCALE USING METAL-POOR STARS CHARACTERIZED WITH APOGEE AND KEPLER , 2014, 1403.1872.

[4]  R. P. Butler,et al.  Solar-like Oscillations in the Metal-poor Subgiant ν Indi: Constraining the Mass and Age Using Asteroseismology , 2006, astro-ph/0604453.

[5]  Bernd Freytag,et al.  Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.

[6]  Travis S. Metcalfe,et al.  A REVISED EFFECTIVE TEMPERATURE SCALE FOR THE KEPLER INPUT CATALOG , 2011, 1110.4456.

[7]  B. Smalley,et al.  Accurate fundamental parameters for 23 bright solar-type stars , 2010, 1002.4268.

[8]  Timothy M. Brown,et al.  Detection of possible p-mode oscillations on Procyon , 1991 .

[9]  M. A. C. Perryman,et al.  The Hipparcos and Tycho catalogues : astrometric and photometric star catalogues derived from the ESA Hipparcos Space Astrometry Mission , 1997 .

[10]  R. Townsend,et al.  GYRE: An open-source stellar oscillation code based on a new Magnus Multiple Shooting Scheme , 2013, 1308.2965.

[11]  Howard Isaacson,et al.  FUNDAMENTAL PROPERTIES OF KEPLER PLANET-CANDIDATE HOST STARS USING ASTEROSEISMOLOGY , 2013, 1302.2624.

[12]  C. Chiappini,et al.  Differential population studies using asteroseismology: Solar-like oscillating giants in CoRoT fields LRc01 and LRa01 , 2013, 1301.1515.

[13]  Conny Aerts,et al.  Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars , 2011, Nature.

[14]  S. D. Kawaler,et al.  Ensemble Asteroseismology of Solar-Type Stars with the NASA Kepler Mission , 2011, Science.

[15]  W. Chaplin,et al.  Asteroseismic surface gravity for evolved stars , 2013, 1305.6586.

[16]  R. K. Ulrich,et al.  Determination of stellar ages from asteroseismology , 1986 .

[17]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[18]  F. Grundahl,et al.  Age and helium content of the open cluster NGC 6791 from multiple eclipsing binary members. I. Measurements, methods, and first results , 2010, 1009.5537.

[19]  P. Gaulme,et al.  RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA , 2013, 1303.1197.

[20]  U. Kolb,et al.  The true stellar parameters of the Kepler target list , 2013, 1302.2867.

[21]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003 .

[22]  Timothy M. Brown,et al.  KEPLER INPUT CATALOG: PHOTOMETRIC CALIBRATION AND STELLAR CLASSIFICATION , 2011, 1102.0342.

[23]  William J. Chaplin,et al.  Asteroseismology of Solar-Type and Red-Giant Stars , 2013, 1303.1957.

[24]  J. Brewer,et al.  THE PHYSICAL PARAMETERS OF THE RETIRED A STAR HD 185351 , 2014, 1407.2329.

[25]  J. De Ridder,et al.  Characterization of red giant stars in the public Kepler data , 2011, 1103.0141.

[26]  Kathryn V. Johnston,et al.  GALAXIA: A CODE TO GENERATE A SYNTHETIC SURVEY OF THE MILKY WAY , 2011, 1101.3561.

[27]  B. Mosser,et al.  Asymptotic and measured large frequency separations , 2012, 1212.1687.

[28]  D. A. Caldwell,et al.  SELECTION, PRIORITIZATION, AND CHARACTERISTICS OF KEPLER TARGET STARS , 2010, 1001.0349.

[29]  B. Mosser,et al.  The underlying physical meaning of the νmax νc relation , 2011, 1104.0630.

[30]  P. Quirion,et al.  The Octave (Birmingham-Sheffield Hallam) automated pipeline for extracting oscillation parameters of solar-like main-sequence stars , 2009, 0911.2612.

[31]  W. Chaplin,et al.  Challenges for asteroseismic analysis of Sun-like stars , 2008, 0804.4371.

[32]  P. Tenenbaum,et al.  VERIFYING ASTEROSEISMICALLY DETERMINED PARAMETERS OF KEPLER STARS USING HIPPARCOS PARALLAXES: SELF-CONSISTENT STELLAR PROPERTIES AND DISTANCES , 2012, 1208.6294.

[33]  J. De Ridder,et al.  FUNDAMENTAL PROPERTIES OF STARS USING ASTEROSEISMOLOGY FROM KEPLER AND CoRoT AND INTERFEROMETRY FROM THE CHARA ARRAY , 2012, 1210.0012.

[34]  T. Bedding Solar-like Oscillations: An Observational Perspective , 2011, 1107.1723.

[35]  D. Schneider,et al.  OSCILLATING RED GIANTS OBSERVED DURING CAMPAIGN 1 OF THE KEPLER K2 MISSION: NEW PROSPECTS FOR GALACTIC ARCHAEOLOGY , 2015, 1506.08931.

[36]  J. Schou,et al.  SEISMIC EVIDENCE FOR A RAPIDLY ROTATING CORE IN A LOWER-GIANT-BRANCH STAR OBSERVED WITH KEPLER , 2012, 1206.3312.

[37]  S. T. Ridgway,et al.  First Results from the CHARA Array. II. A Description of the Instrument , 2005 .

[38]  E. Hatziminaoglou,et al.  Star counts in the Galaxy - Simulating from very deep to very shallow photometric surveys with the TRILEGAL code , 2005, astro-ph/0504047.

[39]  U. Munari,et al.  KINEMATIC MODELING OF THE MILKY WAY USING THE RAVE AND GCS STELLAR SURVEYS , 2014, 1405.7435.

[40]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[41]  M. R. Haas,et al.  INITIAL CHARACTERISTICS OF KEPLER LONG CADENCE DATA FOR DETECTING TRANSITING PLANETS , 2010, 1001.0256.

[42]  Michael A. Perryman,et al.  GAIA: An Astrometric and Photometric Survey of our Galaxy , 2002 .

[43]  J. Ridder,et al.  Red-giant seismic properties analyzed with CoRoT , 2010, 1004.0449.

[44]  J. Ridder,et al.  Probing populations of red giants in the galactic disk with CoRoT , 2009, 0908.0210.

[45]  L. Fossati,et al.  Galactic archaeology: mapping and dating stellar populations with asteroseismology of red-giant stars , 2012, 1211.0146.

[46]  J. De Ridder,et al.  TESTING SCALING RELATIONS FOR SOLAR-LIKE OSCILLATIONS FROM THE MAIN SEQUENCE TO RED GIANTS USING KEPLER DATA , 2011, 1109.3460.

[47]  F. Grundahl,et al.  A LONG-PERIOD TOTALLY ECLIPSING BINARY STAR AT THE TURNOFF OF THE OPEN CLUSTER NGC 6819 DISCOVERED WITH KEPLER , 2012, 1211.2527.

[48]  P. Quirion,et al.  VERIFICATION OF THE KEPLER INPUT CATALOG FROM ASTEROSEISMOLOGY OF SOLAR-TYPE STARS , 2011, 1109.0869.

[49]  Neil J. Balmforth,et al.  Solar pulsational stability – I. Pulsation-mode thermodynamics , 1992 .

[50]  F. Grundahl,et al.  Age and helium content of the open cluster NGC 6791 from multiple eclipsing binary members , 2010, Astronomy & Astrophysics.

[51]  Dean M. Townsley,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.

[52]  P. Gaulme,et al.  KIC 9246715: THE DOUBLE RED GIANT ECLIPSING BINARY WITH ODD OSCILLATIONS , 2016, 1601.00038.

[53]  A. Pigulski,et al.  KIC 8410637: a 408-day period eclipsing binary containing a pulsating giant star , 2013, 1307.0314.

[54]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[55]  F. Grundahl,et al.  STRÖMGREN SURVEY FOR ASTEROSEISMOLOGY AND GALACTIC ARCHAEOLOGY: LET THE SAGA BEGIN , 2014, 1403.2754.

[56]  Hans Kjeldsen,et al.  CALCULATING ASTEROSEISMIC DIAGRAMS FOR SOLAR-LIKE OSCILLATIONS , 2011, 1109.3455.

[57]  M. H. Montgomery,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.