Robot@Home, a robotic dataset for semantic mapping of home environments

This paper presents the Robot-at-Home dataset (Robot@Home), a collection of raw and processed sensory data from domestic settings aimed at serving as a benchmark for semantic mapping algorithms through the categorization of objects and/or rooms. The dataset contains 87,000+ time-stamped observations gathered by a mobile robot endowed with a rig of four RGB-D cameras and a 2D laser scanner. Raw observations have been processed to produce different outcomes also distributed with the dataset, including 3D reconstructions and 2D geometric maps of the inspected rooms, both annotated with the ground truth categories of the surveyed rooms and objects. The proposed dataset is particularly suited as a testbed for object and/or room categorization systems, but it can be also exploited for a variety of tasks, including robot localization, 3D map building, SLAM, and object segmentation. Robot@Home is publicly available for the research community at http://mapir.isa.uma.es/work/robot-at-home-dataset .

[1]  José A. Castellanos,et al.  Mobile Robot Localization and Map Building: A Multisensor Fusion Approach , 2000 .

[2]  Andrew Owens,et al.  SUN3D: A Database of Big Spaces Reconstructed Using SfM and Object Labels , 2013, 2013 IEEE International Conference on Computer Vision.

[3]  Thorsten Joachims,et al.  Contextually guided semantic labeling and search for three-dimensional point clouds , 2013, Int. J. Robotics Res..

[4]  James J. Little,et al.  The UBC Visual Robot Survey: A Benchmark for Robot Category Recognition , 2012, ISER.

[5]  Alessandro Saffiotti,et al.  Inferring robot goals from violations of semantic knowledge , 2013, Robotics Auton. Syst..

[6]  Cristian Sminchisescu,et al.  CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  José García Rodríguez,et al.  Multi-sensor 3D object dataset for object recognition with full pose estimation , 2017, Neural Computing and Applications.

[8]  Miguel Cazorla,et al.  ViDRILO: The Visual and Depth Robot Indoor Localization with Objects information dataset , 2015, Int. J. Robotics Res..

[9]  José A. Castellanos,et al.  Mobile Robot Localization and Map Building , 1999 .

[10]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[11]  Wolfram Burgard,et al.  Semantic Modelling of Space , 2010, Cognitive Systems.

[12]  Sebastian Thrun,et al.  Unsupervised Intrinsic Calibration of Depth Sensors via SLAM , 2013, Robotics: Science and Systems.

[13]  Cipriano Galindo,et al.  An Assisted Navigation Method for Telepresence Robots , 2016, UCAmI.

[14]  Javier González,et al.  Extrinsic calibration of a 2d laser-rangefinder and a camera based on scene corners , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[15]  Nico Blodow,et al.  Real-time compression of point cloud streams , 2012, 2012 IEEE International Conference on Robotics and Automation.

[16]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[17]  Vincent Lepetit,et al.  Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes , 2012, ACCV.

[18]  Dieter Fox,et al.  A large-scale hierarchical multi-view RGB-D object dataset , 2011, 2011 IEEE International Conference on Robotics and Automation.

[19]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[20]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[21]  Dieter Fox,et al.  Unsupervised Feature Learning for RGB-D Based Object Recognition , 2012, ISER.

[22]  Javier González,et al.  Extrinsic calibration of a set of range cameras in 5 seconds without pattern , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.

[24]  Nathan Silberman,et al.  Indoor scene segmentation using a structured light sensor , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[25]  Renato Pajarola,et al.  Automatic room detection and reconstruction in cluttered indoor environments with complex room layouts , 2014, Comput. Graph..

[26]  Cipriano Galindo,et al.  Evaluation of using semi-autonomy features in mobile robotic telepresence systems , 2015, 2015 IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM).

[27]  José-Raúl Ruiz-Sarmiento,et al.  Exploiting semantic knowledge for robot object recognition , 2015, Knowl. Based Syst..

[28]  Javier Gonzalez-Jimenez,et al.  Efficient Reactive Navigation with Exact Collision Determination for 3D Robot Shapes , 2015 .

[29]  Rufael Mekuria,et al.  MP3DG-PCC, Open Source Software Framework for Implementation and Evaluation of Point Cloud Compression , 2016, ACM Multimedia.

[30]  Gi Hyun Lim,et al.  Concurrent learning of visual codebooks and object categories in open-ended domains , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[31]  José-Raúl Ruiz-Sarmiento,et al.  Building Multiversal Semantic Maps for Mobile Robot Operation , 2017, Knowl. Based Syst..

[32]  José-Raúl Ruiz-Sarmiento,et al.  Joint categorization of objects and rooms for mobile robots , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[33]  Markus Vincze,et al.  Automation of “ground truth” annotation for multi-view RGB-D object instance recognition datasets , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  Rüdiger Dillmann,et al.  The KIT object models database: An object model database for object recognition, localization and manipulation in service robotics , 2012, Int. J. Robotics Res..

[35]  Dieter Fox,et al.  Unsupervised feature learning for 3D scene labeling , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[36]  Cipriano Galindo,et al.  Mobile Robot Object Recognition through the Synergy of Probabilistic Graphical Models and Semantic Knowledge , 2014 .

[37]  John J. Leonard,et al.  Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age , 2016, IEEE Transactions on Robotics.

[38]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[39]  Javier González,et al.  Fast Visual Odometry for 3-D Range Sensors , 2015, IEEE Transactions on Robotics.

[40]  Markus Vincze,et al.  RGB-D sensor setup for multiple tasks of home robots and experimental results , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  José-Raúl Ruiz-Sarmiento,et al.  OLT: A Toolkit for Object Labeling applied to robotic RGB-D datasets , 2015, 2015 European Conference on Mobile Robots (ECMR).

[42]  Pieter Abbeel,et al.  BigBIRD: A large-scale 3D database of object instances , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).