DISCOVERY, PROGENITOR AND EARLY EVOLUTION OF A STRIPPED ENVELOPE SUPERNOVA iPTF13bvn

The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC 5806 (22.5 Mpc). Our spectral sequence in the optical and infrared suggests a Type Ib classification. We identify a blue progenitor candidate in deep pre-explosion imaging within a 2σ error circle of 80 mas (8.7 pc). The candidate has an M_B luminosity of −5.52 ± 0.39 mag and a B − I color of 0.25 ± 0.25 mag. If confirmed by future observations, this would be the first direct detection for a progenitor of a Type Ib. Fitting a power law to the early light curve, we find an extrapolated explosion date around 0.6 days before our first detection. We see no evidence of shock cooling. The pre-explosion detection limits constrain the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in centimeter and millimeter wavelengths. Fitting a synchrotron self-absorption model to our radio data, we find a mass-loading parameter of 1.3×10^(12) g cm^(−1). Assuming a wind velocity of 10^3 km s^(−1), we derive a progenitor mass-loss rate of 3 × 10^(−5) M☉ yr^(−1). Our observations, taken as a whole, are consistent with a Wolf–Rayet progenitor of the supernova iPTF13bvn.

[1]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[2]  Ricardo Covarrubias,et al.  THE HE-RICH CORE-COLLAPSE SUPERNOVA 2007Y: OBSERVATIONS FROM X-RAY TO RADIO WAVELENGTHS , 2009, 0902.0609.

[3]  Peter E. Nugent,et al.  EARLY RADIO AND X-RAY OBSERVATIONS OF THE YOUNGEST NEARBY TYPE Ia SUPERNOVA PTF 11kly (SN 2011fe) , 2011, 1109.2912.

[4]  M. Sullivan,et al.  The Palomar Transient Factory Photometric Calibration , 2011, 1112.4851.

[5]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[6]  Thomas Matheson,et al.  The Type Ic Supernova 1994I in M51: Detection of Helium and Spectral Evolution , 1995 .

[7]  Eli Waxman,et al.  THE EARLY UV/OPTICAL EMISSION FROM CORE-COLLAPSE SUPERNOVAE , 2010, 1002.3414.

[8]  A. Pastorello,et al.  SN 2004aw: confirming diversity of Type Ic supernovae , 2006 .

[9]  Bruce C. Bigelow,et al.  FIRE: A Facility Class Near-Infrared Echelle Spectrometer for the Magellan Telescopes , 2013 .

[10]  R. Izzard,et al.  On the nature and detectability of Type Ib/c supernova progenitors , 2012, 1207.3683.

[11]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[12]  S. Woosley,et al.  On the nature of supernovae Ib and Ic , 2012, 1205.5349.

[13]  A. Pastorello,et al.  The Carbon-rich Type Ic SN 2007gr: The Photospheric Phase , 2007, 0712.1899.

[14]  R. Chevalier Synchrotron Self-Absorption in Radio Supernovae , 1998 .

[15]  E. Ofek,et al.  An extremely luminous X-ray outburst at the birth of a supernova , 2008, Nature.

[16]  Andrew E. Dolphin,et al.  WFPC2 Stellar Photometry with HSTphot , 2000, astro-ph/0006217.

[17]  Physics,et al.  SN 2009jf: a slow-evolving stripped-envelope core-collapse supernova , 2011, 1106.3030.

[18]  H. Courtois,et al.  THE EXTRAGALACTIC DISTANCE DATABASE , 2009, 0902.3668.

[19]  Mohan Ganeshalingam,et al.  Nearby supernova rates from the Lick Observatory Supernova Search – III. The rate–size relation, and the rates as a function of galaxy Hubble type and colour , 2010, 1006.4613.

[20]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[21]  J. Prochaska,et al.  An empirical relation between sodium absorption and dust extinction , 2012, 1206.6107.

[22]  James Lyke,et al.  OSIRIS: a diffraction limited integral field spectrograph for Keck , 2006, SPIE Astronomical Telescopes + Instrumentation.

[23]  Phillip J. MacQueen,et al.  Hobby-Eberly Telescope low-resolution spectrograph , 1998, Astronomical Telescopes and Instrumentation.

[24]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[25]  A. Pastorello,et al.  A deeper search for the progenitor of the Type Ic Supernova 2002ap , 2007, 0706.0500.

[26]  R. Kotak,et al.  THE TYPE IIb SUPERNOVA 2011dh FROM A SUPERGIANT PROGENITOR , 2012, 1207.5975.

[27]  E. Nakar,et al.  WHAT CAN WE LEARN FROM THE RISING LIGHT CURVES OF RADIOACTIVELY POWERED SUPERNOVAE? , 2012, 1210.3032.

[28]  Daniel Kasen,et al.  SEEING THE COLLISION OF A SUPERNOVA WITH ITS COMPANION STAR , 2009, 0909.0275.

[29]  R. C. Dixon,et al.  DISCOVERY AND EARLY MULTI-WAVELENGTH MEASUREMENTS OF THE ENERGETIC TYPE IC SUPERNOVA PTF12GZK: A MASSIVE-STAR EXPLOSION IN A DWARF HOST GALAXY , 2012, 1208.5900.

[30]  E. Nakar,et al.  EARLY SUPERNOVAE LIGHT CURVES FOLLOWING THE SHOCK BREAKOUT , 2010, 1004.2496.

[31]  P. Mazzali,et al.  How much H and He is ‘hidden’ in SNe Ib/c? – I. Low-mass objects , 2012, 1201.1506.

[32]  R. Chevalier,et al.  Circumstellar Emission from Type Ib and Ic Supernovae , 2006, astro-ph/0607196.

[33]  William C. Danchi,et al.  A dusty pinwheel nebula around the massive star WR104 , 1999, Nature.

[34]  D. Frail,et al.  EVIDENCE FOR A COMPACT WOLF–RAYET PROGENITOR FOR THE TYPE Ic SUPERNOVA PTF 10vgv , 2011, 1110.5618.

[35]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[36]  Marco Bonati,et al.  The Automated Palomar 60 Inch Telescope , 2006, astro-ph/0608323.

[37]  Chien Y. Peng,et al.  UBVRI Photometry of the Type IC SN 1994I in M51 , 1996 .