Non-Gaussian information from weak lensing data via deep learning

Weak lensing maps contain information beyond two-point statistics on small scales. Much recent work has tried to extract this information through a range of different observables or via nonlinear transformations of the lensing field. Here we train and apply a two-dimensional convolutional neural network to simulated noiseless lensing maps covering 96 different cosmological models over a range of ${{\mathrm{\ensuremath{\Omega}}}_{m},{\ensuremath{\sigma}}_{8}}$. Using the area of the confidence contour in the ${{\mathrm{\ensuremath{\Omega}}}_{m},{\ensuremath{\sigma}}_{8}}$ plane as a figure of merit, derived from simulated convergence maps smoothed on a scale of 1.0 arcmin, we show that the neural network yields $\ensuremath{\approx}5\ifmmode\times\else\texttimes\fi{}$ tighter constraints than the power spectrum, and $\ensuremath{\approx}4\ifmmode\times\else\texttimes\fi{}$ tighter than the lensing peaks. Such gains illustrate the extent to which weak lensing data encode cosmological information not accessible to the power spectrum or even other, non-Gaussian statistics such as lensing peaks.

[1]  G. Fasano,et al.  A multidimensional version of the Kolmogorov–Smirnov test , 1987 .

[2]  Morgan May,et al.  Probing cosmology with weak lensing peak counts , 2009, 0907.0486.

[3]  University of Cambridge,et al.  Cosmological information in weak lensing peaks , 2011, 1109.6333.

[4]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[5]  L. Tippett,et al.  Applied Statistics. A Journal of the Royal Statistical Society , 1952 .

[6]  Uros Seljak,et al.  Cosmological Model Predictions for Weak Lensing: Linear and Nonlinear Regimes , 1996, astro-ph/9611077.

[7]  Chieh-An Lin,et al.  A New Model to Predict Weak Lensing Peak Counts , 2014, Proceedings of the International Astronomical Union.

[8]  C. B. D'Andrea,et al.  Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data , 2016, 1603.05040.

[9]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[10]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[11]  Naoki Yoshida,et al.  STATISTICAL AND SYSTEMATIC ERRORS IN THE MEASUREMENT OF WEAK-LENSING MINKOWSKI FUNCTIONALS: APPLICATION TO THE CANADA–FRANCE–HAWAII LENSING SURVEY , 2013, 1312.5032.

[12]  Naoki Yoshida,et al.  IMPACT OF BARYONIC PROCESSES ON WEAK-LENSING COSMOLOGY: POWER SPECTRUM, NONLOCAL STATISTICS, AND PARAMETER BIAS , 2015, 1501.02055.

[13]  Masanori Sato,et al.  RE-CAPTURING COSMIC INFORMATION , 2010, 1008.0349.

[14]  P. Astier,et al.  Dark-energy constraints and correlations with systematics from CFHTLS weak lensing, SNLS supernovae Ia and WMAP5 ⋆ , 2008, 0810.5129.

[15]  Wayne Hu Dark energy and matter evolution from lensing tomography , 2002 .

[16]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[17]  Morgan May,et al.  Sample variance in weak lensing: How many simulations are required? , 2016, 1601.06792.

[18]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[19]  Salvatore Sessa,et al.  Neural neZtworks in astronomy , 2003, Neural Networks.

[20]  H. Shan,et al.  NOISY WEAK-LENSING CONVERGENCE PEAK STATISTICS NEAR CLUSTERS OF GALAXIES AND BEYOND , 2010, 1006.5121.

[21]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[22]  Joop Schaye,et al.  Effect of baryonic feedback on two- and three-point shear statistics: prospects for detection and improved modelling , 2012, 1210.7303.

[23]  Chieh-An Lin,et al.  A new model to predict weak-lensing peak counts II. Parameter constraint strategies , 2015, 1506.01076.

[24]  Masanori Sato,et al.  Precise estimation of cosmological parameters using a more accurate likelihood function. , 2010, Physical review letters.

[25]  Columbia University,et al.  Origin of weak lensing convergence peaks , 2016, 1606.01318.

[26]  S. Krughoff,et al.  The effective number density of galaxies for weak lensing measurements in the LSST project , 2013, 1305.0793.

[27]  Morgan May,et al.  Emulating the CFHTLenS weak lensing data: Cosmological constraints from moments and Minkowski functionals , 2015, 1503.06214.

[28]  Martin Kilbinger,et al.  Cosmology with cosmic shear observations: a review , 2014, Reports on progress in physics. Physical Society.

[29]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[30]  J. P. Dietrich,et al.  Cosmology with the shear-peak statistics , 2009, 0906.3512.

[31]  A. K. Cline,et al.  A triangle-based $C^1$ interpolation method , 1984 .

[32]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[33]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[34]  M. May,et al.  Cosmology constraints from the weak lensing peak counts and the power spectrum in CFHTLenS data , 2014, 1412.0757.

[35]  A. S. Miller,et al.  A review of neural network applications in Astronomy , 1993 .

[36]  A. Réfrégier Weak Gravitational Lensing by Large-Scale Structure , 2003, astro-ph/0307212.

[37]  Kilian Q. Weinberger,et al.  Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48 , 2016 .

[38]  University of Cambridge,et al.  Probing Cosmology with Weak Lensing Minkowski Functionals , 2011, 1109.6334.

[39]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[40]  H. Hoekstra,et al.  KiDS-450: cosmological constraints from weak-lensing peak statistics - II: Inference from shear peaks using N-body simulations , 2017, 1709.07678.

[41]  Morgan May,et al.  Validity of the Born approximation for beyond Gaussian weak lensing observables , 2016, 1612.00852.

[42]  Andrea Petri,et al.  Mocking the weak lensing universe: The LensTools Python computing package , 2016, Astron. Comput..

[43]  Wenjuan Fang,et al.  Constraining dark energy by combining cluster counts and shear-shear correlations in a weak lensing survey , 2007 .

[44]  Masato Shirasaki,et al.  Statistical connection of peak counts to power spectrum and moments in weak-lensing field , 2016, 1610.00840.

[45]  A. Szalay,et al.  REJUVENATING THE MATTER POWER SPECTRUM: RESTORING INFORMATION WITH A LOGARITHMIC DENSITY MAPPING , 2009, 0903.4693.

[46]  Daniel J. Hsu,et al.  Do dark matter halos explain lensing peaks , 2016, 1609.03973.

[47]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[48]  Peter Alfeld,et al.  A trivariate clough-tocher scheme for tetrahedral data , 1984, Comput. Aided Geom. Des..

[49]  C. Alcock Gravitational lenses , 1982, Nature.