Invisible Higgs decay in a supersymmetric inverse seesaw model with light sneutrino dark matter
暂无分享,去创建一个
Biswarup Mukhopadhyaya | Sourov Roy | P. S. Bhupal Dev | Subhadeep Mondal | B. Mukhopādhyāẏa | Sourov Roy | P. Dev | Shankha Banerjee | S. Mondal | S. Banerjee
[1] Albert Villanova del Moral,et al. Minimal supersymmetric inverse seesaw: neutrino masses, lepton flavour violation and LHC phenomenology , 2009, 0910.2435.
[2] J. Chiang,et al. Fermi LAT search for dark matter in gamma-ray lines and the inclusive photon spectrum , 2012, Physical Review D.
[3] S. Heinemeyer,et al. Mass bounds on a very light neutralino , 2009, 0901.3485.
[4] U. Ellwanger,et al. Status of invisible Higgs decays , 2013, 1302.5694.
[5] Robert Shrock,et al. Invisible decays of Higgs bosons , 1982 .
[6] Biswarup Mukhopadhyaya,et al. Phenomenology of light sneutrino dark matter in cMSSM/mSUGRA with inverse seesaw , 2012, 1207.6542.
[7] G. Drake,et al. Results from a search for light-mass dark matter with a p-type point contact germanium detector. , 2010, Physical review letters.
[8] Florian Staub,et al. From superpotential to model files for FeynArts and CalcHep/CompHep , 2009, Comput. Phys. Commun..
[9] Yi-Fu Cai,et al. Sneutrino dark matter in gauged inverse seesaw models for neutrinos. , 2011, Physical review letters.
[10] J. Valle,et al. Invisible Higgs decays and neutrino physics , 1993 .
[11] Y. Mambrini. Higgs searches and singlet scalar dark matter: Combined constraints from XENON 100 and the LHC , 2011, 1108.0671.
[12] J. Valle,et al. Neutrino mass and baryon-number nonconservation in superstring models. , 1986, Physical review. D, Particles and fields.
[13] S. Kraml,et al. Light sneutrino dark matter at the LHC , 2011, 1105.4878.
[14] T. Corbett,et al. Constraining anomalous Higgs boson interactions , 2012, 1207.1344.
[15] David J. Miller,et al. Handbook of LHC Higgs Cross Sections: 3. Higgs Properties , 2013, 1307.1347.
[16] W. Skulski,et al. The Large Underground Xenon (LUX) experiment , 2012, 1211.3788.
[17] E. Aprile,et al. The XENON dark matter search experiment , 2004, 1206.6288.
[18] Probing for invisible Higgs decays with global fits , 2012, 1205.6790.
[19] Sudhanwa Patra,et al. Neutrino masses, dominant neutrinoless double beta decay, and observable lepton flavor violation in left-right models and SO(10) grand unification with low mass WR, ZR bosons , 2013, 1302.0672.
[20] F. Campanario,et al. Gluon-fusion contributions to H+2 jet production , 2001, hep-ph/0108030.
[21] R. R. Austri,et al. The health of SUSY after the Higgs discovery and the XENON100 data , 2012, 1212.4821.
[22] J. T. Childers,et al. UvA-DARE (Digital Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC , 2013 .
[23] D. Zeppenfeld,et al. Observing an invisible Higgs boson , 2000 .
[24] Avelino Vicente,et al. Enhancing lepton flavour violation in the supersymmetric inverse seesaw beyond the dipole contribution , 2012, 1206.6497.
[25] B. Mukhopādhyāẏa,et al. New Higgs interactions and recent data from the LHC and the Tevatron , 2012, 1207.3588.
[26] M. B. Gavela,et al. Low energy effects of neutrino masses , 2007, 0707.4058.
[27] R. Pittau,et al. ALPGEN, a generator for hard multiparton processes in hadronic collisions , 2002, hep-ph/0206293.
[28] P. Zerwas,et al. Exploring the SUSY Higgs sector ate+e− linear colliders: a synopsis , 1993 .
[29] S. Khalil,et al. Muon anomalous magnetic moment and μ→eγ in B−L model with inverse seesaw , 2011, 1105.1047.
[30] Alan D. Martin,et al. Review of Particle Physics (RPP) , 2012 .
[31] L. Basso,et al. Natural Z′ model with an inverse seesaw mechanism and leptonic dark matter , 2012, 1207.3250.
[32] S. Petcov,et al. Erratum: the μ − e conversion in nuclei, μ → eγ, μ → 3e decays and TeV scale see-saw scenarios of neutrino mass generation , 2013 .
[33] F. Ling,et al. Light scalar WIMP through the Higgs portal and CoGeNT , 2010, 1003.2595.
[34] M. Gell-Mann,et al. Complex spinors and unified theories , 2013, 1306.4669.
[35] M. P. Casado,et al. Search for flavour-changing neutral current top quark decays t → Hq in pp collisions at s=8$$ \sqrt{s}=8 $$ TeV with the ATLAS detector , 2015 .
[36] A. Nikitenko,et al. Monte Carlo study of gg ---> H+jets contribution to Vector Boson Fusion Higgs production at the LHC , 2007, 0705.3585.
[37] S. Petcov,et al. The μ − e conversion in nuclei, μ → eγ, μ → 3e decays and TeV scale see-saw scenarios of neutrino mass generation , 2012, 1205.4671.
[38] J. Romão,et al. New Higgs signatures in supersymmetry with spontaneous broken R parity , 1992, hep-ph/9207269.
[39] M. Lindner,et al. Naturalness of neutralino dark matter , 2012, 1207.4434.
[40] J. Ellis,et al. Updated global analysis of Higgs couplings , 2013, 1303.3879.
[41] J. Abdallah,et al. Searches for invisibly decaying Higgs bosons with the DELPHI detector at LEP , 2004 .
[42] B. Mukhopādhyāẏa,et al. Linear collider signals of an invisible Higgs boson in theories of large extra dimensions , 2004 .
[43] Albert Villanova del Moral,et al. Invisible Higgs boson decays in spontaneously broken R parity , 2004, hep-ph/0407269.
[44] A. Roeck,et al. The CMSSM and NUHM1 in light of 7 TeV LHC, Bs→μ+μ− and XENON100 data , 2012, 1207.7315.
[45] Heavy sneutrinos as dark matter , 1994, hep-ph/9409270.
[46] H. Okada,et al. Higgs signatures in inverse seesaw model at the LHC , 2012, 1209.4803.
[47] D. Leith,et al. Precision Measurement of the $B \to X_s \gamma$ Photon Energy Spectrum, Branching Fraction, and Direct CP Asymmetry $A_{CP}(B \to X_{s+d}\gamma)$ , 2012 .
[48] R. Arnowitt,et al. Applied N=1 Supergravity: (Volume 1) , 1984 .
[49] H. Baer,et al. Post-LHC7 fine-tuning in the minimal supergravity/CMSSM model with a 125 GeV Higgs boson , 2012, 1210.3019.
[50] A. Barr,et al. The race for supersymmetry: Using m T2 for discovery , 2009, 0907.2713.
[51] The minimal model of nonbaryonic dark matter: A singlet scalar , 2000, hep-ph/0011335.
[52] He Zhang,et al. Nonunitarity effects in a realistic low-scale seesaw model , 2009, 0903.1961.
[53] P. S. Bhupal Dev,et al. Multi-Lepton Collider Signatures of Heavy Dirac and Majorana Neutrinos , 2011, 1112.6419.
[54] D. Hauff,et al. Results from 730 kg days of the CRESST-II Dark Matter search , 2011, 1109.0702.
[55] S. Farrington,et al. Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables , 2011, 1101.0593.
[56] Werner Porod,et al. SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+e− colliders☆ , 2003, hep-ph/0301101.
[57] A. Semenov,et al. micrOMEGAs2.0: A program to calculate the relic density of dark matter in a generic model , 2007, Comput. Phys. Commun..
[58] A. Djouadi,et al. The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7+8 TeV LHC , 2013, 1303.6591.
[59] M. Pospelov,et al. Higgs decays to dark matter: Beyond the minimal model , 2011, 1109.4872.
[60] P. S. Bhupal Dev,et al. Bounds on TeV seesaw models from LHC Higgs data , 2012, 1207.2756.
[61] S. Mrenna,et al. Pythia 6.3 physics and manual , 2003, hep-ph/0308153.
[62] E Aprile,et al. Dark matter results from 225 live days of XENON100 data. , 2012, Physical review letters.
[63] The XENON1T Dark Matter Search Experiment , 2019 .
[64] Florian Staub,et al. Automatic calculation of supersymmetric renormalization group equations and loop corrections , 2010, Comput. Phys. Commun..
[65] M. Guchait,et al. Looking for an Invisible Higgs Signal at the LHC , 2012, 1211.7015.
[66] Jong Soo Kim,et al. First LHC constraints on neutralinos , 2012, 1206.3096.
[67] S. Wu,et al. The Higgs at last. , 2012, Scientific American.
[68] Alan D. Martin,et al. Review of Particle Physics , 2010 .
[69] G. Senjanovic,et al. Neutrino Mass and Spontaneous Parity Nonconservation , 1980 .
[70] T Glanzman,et al. Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope. , 2011, Physical review letters.
[71] J. Gunion,et al. Nonstandard Higgs Boson Decays , 2008, 0801.4554.
[72] Thorsten Ohl,et al. A tool box for implementing supersymmetric models , 2011, Comput. Phys. Commun..
[73] Reid,et al. Detecting invisible Higgs bosons at the CERN Large Hadron Collider. , 1994, Physical review. D, Particles and fields.
[74] Debottam Das,et al. Enhanced Higgs mediated lepton flavour violating processes in the supersymmetric inverse seesaw model , 2011, 1111.5836.
[75] Z. Xing,et al. Non-unitary neutrino mixing and CP violation in the minimal inverse seesaw model , 2009, 0905.2889.
[76] Michele Maltoni,et al. Phenomenology with Massive Neutrinos , 2007, 0704.1800.
[77] M. Raidal,et al. Hints for a nonstandard Higgs boson from the LHC , 2011, 1108.4903.
[78] P. Nath. SUGRA Grand Unification, LHC and dark matter , 2012, 1207.5501.
[79] Prospects for observing an invisibly decaying Higgs boson in the ${t \bar t H}$ production at the LHC , 2002, hep-ph/0407160.
[80] Gerard Jungman,et al. Supersymmetric Dark Matter , 2000 .
[81] S. Khalil,et al. Right-handed sneutrino dark matter in supersymmetric B − L model , 2011, 1102.4249.
[82] J. Gunion,et al. Higgs couplings at the end of 2012 , 2012, 1212.5244.
[83] S. Antusch,et al. Non-standard neutrino interactions with matter from physics beyond the Standard Model , 2008, 0807.1003.
[84] G. Bertone,et al. Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.
[85] R. Mohapatra,et al. Mechanism for understanding small neutrino mass in superstring theories. , 1986, Physical review letters.
[86] M. Battaglia,et al. Constraints on the MSSM from the Higgs sector , 2011, 1112.3032.
[87] Daniele Dominici,et al. Invisible Higgs decays from Higgs-graviscalar mixing , 2009, 0902.1512.
[88] José W. F. Valle,et al. Neutrino masses in SU(2) ⊗ U(1) theories , 1980 .
[89] J. Huston,et al. New generation of parton distributions with uncertainties from global QCD analysis , 2002, hep-ph/0201195.
[90] L. Roszkowski,et al. Two ultimate tests of constrained supersymmetry , 2013, 1302.5956.
[91] Ericka Stricklin-Parker,et al. Ann , 2005 .
[92] Werner Porod,et al. SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM , 2011, Comput. Phys. Commun..
[93] G. Gomez-Ceballos,et al. Searches for invisibly decaying Higgs bosons with the DELPHI detector at LEP , 2004 .
[94] Jae Sik Lee,et al. Higgs precision (Higgcision) era begins , 2013, 1302.3794.
[95] M. Hirsch,et al. Sneutrino dark matter in low-scale seesaw scenarios , 2012, 1209.3891.
[96] T. Teubner,et al. Z ) re-evaluated using new precise data , 2011 .
[97] J. Singh,et al. Search for invisibly decaying Higgs boson at Large Hadron Collider , 2010 .
[98] J. Shelton,et al. Measuring the invisible Higgs width at the 7 and 8 TeV LHC , 2011, 1112.4496.
[99] N. Okada,et al. Inverse seesaw neutrino signatures at the LHC and ILC , 2012, 1207.3734.
[100] D O Caldwell,et al. Silicon detector dark matter results from the final exposure of CDMS II. , 2013, Physical review letters.
[101] R. Arnowitt,et al. Applied N=1 Supergravity , 1984 .
[102] L. Hall. Weak Scale Supersymmetry , 1991 .
[103] M. Hirsch,et al. Enhancing l i → 3 l j with the Z 0 -penguin , 2012, 1202.1825.
[104] Shou-hua Zhu. Detecting an invisible Higgs boson at Fermilab Tevatron and CERN LHC , 2005, hep-ph/0512055.
[105] J. Valle,et al. Global status of neutrino oscillation parameters after Neutrino-2012 , 2012, 1205.4018.
[106] A. Mazumdar,et al. Naturalness of light neutralino dark matter in pMSSM after LHC, XENON100 and Planck data , 2013, Journal of High Energy Physics.
[107] D. Rebuzzi,et al. Standard model Higgs-boson branching ratios with uncertainties , 2011, 1107.5909.
[108] B. Mukhopādhyāẏa,et al. Signals of an invisibly decaying Higgs boson in a scalar dark matter scenario: A study for the Large Hadron Collider , 2011, 1105.5837.
[109] Ryszard S. Romaniuk,et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .
[110] D. Choudhury,et al. Signatures of an invisibly decaying Higgs particle at LHC , 1993, hep-ph/9312347.
[111] R. Konoplich,et al. Invisible Higgs boson decay into massive neutrinos of fourth generation , 2003 .
[112] F. Feroz,et al. Global Fits of the cMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints , 2012, 1212.2636.
[113] T. Binoth,et al. Influence of strongly coupled, hidden scalars on Higgs signals , 1997 .
[114] Sourov Roy,et al. Exploring novel correlations in trilepton channels at the LHC for the minimal supersymmetric inverse seesaw model , 2012, 1201.1556.
[115] K. Griest,et al. Invisible decays of Higgs bosons in supersymmetric models. , 1988, Physical review. D, Particles and fields.
[116] P. Belli,et al. New results from DAMA/LIBRA , 2010, 1002.1028.
[117] J. Romão,et al. Minimal supergravity scalar neutrino dark matter and inverse seesaw neutrino masses. , 2008, Physical review letters.
[118] G. Aad,et al. Corrigendum to “Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC” [Phys. Lett. B 726 (1–3) (2013) 88] , 2014 .
[119] B. Mukhopādhyāẏa,et al. Constraints on invisible Higgs decay in MSSM in the light of diphoton rates from the LHC , 2012, 1202.5190.
[120] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[121] A. Semenov,et al. Dark matter direct detection rate in a generic model with micrOMEGAs_2.2 , 2008, Comput. Phys. Commun..
[122] C. A. Oxborrow,et al. Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.
[123] R. Godbole,et al. Higgs boson in the MSSM in light of the LHC , 2011, 1112.2200.
[124] R. B. Barreiro,et al. Planck 2013 results , 2014 .
[125] Alessandro Strumia,et al. The universal Higgs fit , 2013, 1303.3570.
[126] P. Minkowski. μ→eγ at a rate of one out of 109 muon decays? , 1977 .
[127] J. Valle,et al. Enhanced lepton flavor violation in the supersymmetric inverse seesaw model , 2004, hep-ph/0406040.
[128] Search for `invisible' Higgs signals at LHC via associated production with gauge bosons , 2003, hep-ph/0304137.
[129] Alan D. Martin,et al. (g-2)_mu and alpha(M_Z^2) re-evaluated using new precise data , 2011, 1105.3149.
[130] P. S. Bhupal Dev,et al. TeV scale inverse seesaw model in SO(10) and leptonic nonunitarity effects , 2009, 0910.3924.
[131] Enectali Figueroa-Feliciano,et al. Dark Matter Search Results Using the Silicon Detectors of CDMS II , 2013 .
[132] F. Boudjema,et al. The MSSM invisible Higgs in the light of dark matter and g − 2 . , 2001 .
[133] S. Petcov,et al. Low energy signatures of the TeV scale seesaw mechanism , 2011, 1103.6217.
[134] J. Huston,et al. Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions , 1999, hep-ph/9903282.
[135] Simon Hayes,et al. Act 4 , 1998, Romeo and Juliet.
[136] M. K. Parida,et al. Inverse Seesaw Mechanism in Nonsupersymmetric SO(10), Proton Lifetime, Nonunitarity Effects, and a Low-mass Z' Boson , 2011, 1112.1826.
[137] M. Hayakawa,et al. Tenth-order QED contribution to the electron g-2 and an improved value of the fine structure constant. , 2012, Physical review letters.
[138] T. Corbett,et al. Robust Determination of the Higgs Couplings: Power to the Data , 2012, 1211.4580.
[139] J. Valle,et al. Enhanced μ−–e− conversion in nuclei in the inverse seesaw model , 2005, hep-ph/0512360.
[140] L. A. Granado Cardoso,et al. First evidence for the decay B(s)(0)→μ+ μ-. , 2012, Physical review letters.