Invisible Higgs decay in a supersymmetric inverse seesaw model with light sneutrino dark matter

A bstractWithin the framework of a constrained Minimal Supersymmetric Standard Model (cMSSM) augmented by an MSSM singlet-pair sector to account for the non-zero neutrino masses by inverse seesaw mechanism, the lightest supersymmetric particle (LSP) can be a mixed sneutrino with mass as small as 50 GeV, satisfying all existing constraints, thus qualifying as a light dark matter candidate. We study the possibility of the lightest neutral Higgs boson in this model decaying invisibly into a pair of sneutrino LSPs, thereby giving rise to novel missing energy signatures at the LHC. We perform a two-parameter global analysis of the LHC Higgs data available till date to determine the optimal invisible Higgs branching fraction in this scenario, and obtain a 2σ (1σ) upper limit of 0.25 (0.15). A detailed cut-based analysis is carried out thereafter, demonstrating the viability of our proposed signal vis-a-vis backgrounds at the LHC.

[1]  Albert Villanova del Moral,et al.  Minimal supersymmetric inverse seesaw: neutrino masses, lepton flavour violation and LHC phenomenology , 2009, 0910.2435.

[2]  J. Chiang,et al.  Fermi LAT search for dark matter in gamma-ray lines and the inclusive photon spectrum , 2012, Physical Review D.

[3]  S. Heinemeyer,et al.  Mass bounds on a very light neutralino , 2009, 0901.3485.

[4]  U. Ellwanger,et al.  Status of invisible Higgs decays , 2013, 1302.5694.

[5]  Robert Shrock,et al.  Invisible decays of Higgs bosons , 1982 .

[6]  Biswarup Mukhopadhyaya,et al.  Phenomenology of light sneutrino dark matter in cMSSM/mSUGRA with inverse seesaw , 2012, 1207.6542.

[7]  G. Drake,et al.  Results from a search for light-mass dark matter with a p-type point contact germanium detector. , 2010, Physical review letters.

[8]  Florian Staub,et al.  From superpotential to model files for FeynArts and CalcHep/CompHep , 2009, Comput. Phys. Commun..

[9]  Yi-Fu Cai,et al.  Sneutrino dark matter in gauged inverse seesaw models for neutrinos. , 2011, Physical review letters.

[10]  J. Valle,et al.  Invisible Higgs decays and neutrino physics , 1993 .

[11]  Y. Mambrini Higgs searches and singlet scalar dark matter: Combined constraints from XENON 100 and the LHC , 2011, 1108.0671.

[12]  J. Valle,et al.  Neutrino mass and baryon-number nonconservation in superstring models. , 1986, Physical review. D, Particles and fields.

[13]  S. Kraml,et al.  Light sneutrino dark matter at the LHC , 2011, 1105.4878.

[14]  T. Corbett,et al.  Constraining anomalous Higgs boson interactions , 2012, 1207.1344.

[15]  David J. Miller,et al.  Handbook of LHC Higgs Cross Sections: 3. Higgs Properties , 2013, 1307.1347.

[16]  W. Skulski,et al.  The Large Underground Xenon (LUX) experiment , 2012, 1211.3788.

[17]  E. Aprile,et al.  The XENON dark matter search experiment , 2004, 1206.6288.

[18]  Probing for invisible Higgs decays with global fits , 2012, 1205.6790.

[19]  Sudhanwa Patra,et al.  Neutrino masses, dominant neutrinoless double beta decay, and observable lepton flavor violation in left-right models and SO(10) grand unification with low mass WR, ZR bosons , 2013, 1302.0672.

[20]  F. Campanario,et al.  Gluon-fusion contributions to H+2 jet production , 2001, hep-ph/0108030.

[21]  R. R. Austri,et al.  The health of SUSY after the Higgs discovery and the XENON100 data , 2012, 1212.4821.

[22]  J. T. Childers,et al.  UvA-DARE (Digital Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC , 2013 .

[23]  D. Zeppenfeld,et al.  Observing an invisible Higgs boson , 2000 .

[24]  Avelino Vicente,et al.  Enhancing lepton flavour violation in the supersymmetric inverse seesaw beyond the dipole contribution , 2012, 1206.6497.

[25]  B. Mukhopādhyāẏa,et al.  New Higgs interactions and recent data from the LHC and the Tevatron , 2012, 1207.3588.

[26]  M. B. Gavela,et al.  Low energy effects of neutrino masses , 2007, 0707.4058.

[27]  R. Pittau,et al.  ALPGEN, a generator for hard multiparton processes in hadronic collisions , 2002, hep-ph/0206293.

[28]  P. Zerwas,et al.  Exploring the SUSY Higgs sector ate+e− linear colliders: a synopsis , 1993 .

[29]  S. Khalil,et al.  Muon anomalous magnetic moment and μ→eγ in B−L model with inverse seesaw , 2011, 1105.1047.

[30]  Alan D. Martin,et al.  Review of Particle Physics (RPP) , 2012 .

[31]  L. Basso,et al.  Natural Z′ model with an inverse seesaw mechanism and leptonic dark matter , 2012, 1207.3250.

[32]  S. Petcov,et al.  Erratum: the μ − e conversion in nuclei, μ → eγ, μ → 3e decays and TeV scale see-saw scenarios of neutrino mass generation , 2013 .

[33]  F. Ling,et al.  Light scalar WIMP through the Higgs portal and CoGeNT , 2010, 1003.2595.

[34]  M. Gell-Mann,et al.  Complex spinors and unified theories , 2013, 1306.4669.

[35]  M. P. Casado,et al.  Search for flavour-changing neutral current top quark decays t → Hq in pp collisions at s=8$$ \sqrt{s}=8 $$ TeV with the ATLAS detector , 2015 .

[36]  A. Nikitenko,et al.  Monte Carlo study of gg ---> H+jets contribution to Vector Boson Fusion Higgs production at the LHC , 2007, 0705.3585.

[37]  S. Petcov,et al.  The μ − e conversion in nuclei, μ → eγ, μ → 3e decays and TeV scale see-saw scenarios of neutrino mass generation , 2012, 1205.4671.

[38]  J. Romão,et al.  New Higgs signatures in supersymmetry with spontaneous broken R parity , 1992, hep-ph/9207269.

[39]  M. Lindner,et al.  Naturalness of neutralino dark matter , 2012, 1207.4434.

[40]  J. Ellis,et al.  Updated global analysis of Higgs couplings , 2013, 1303.3879.

[41]  J. Abdallah,et al.  Searches for invisibly decaying Higgs bosons with the DELPHI detector at LEP , 2004 .

[42]  B. Mukhopādhyāẏa,et al.  Linear collider signals of an invisible Higgs boson in theories of large extra dimensions , 2004 .

[43]  Albert Villanova del Moral,et al.  Invisible Higgs boson decays in spontaneously broken R parity , 2004, hep-ph/0407269.

[44]  A. Roeck,et al.  The CMSSM and NUHM1 in light of 7 TeV LHC, Bs→μ+μ− and XENON100 data , 2012, 1207.7315.

[45]  Heavy sneutrinos as dark matter , 1994, hep-ph/9409270.

[46]  H. Okada,et al.  Higgs signatures in inverse seesaw model at the LHC , 2012, 1209.4803.

[47]  D. Leith,et al.  Precision Measurement of the $B \to X_s \gamma$ Photon Energy Spectrum, Branching Fraction, and Direct CP Asymmetry $A_{CP}(B \to X_{s+d}\gamma)$ , 2012 .

[48]  R. Arnowitt,et al.  Applied N=1 Supergravity: (Volume 1) , 1984 .

[49]  H. Baer,et al.  Post-LHC7 fine-tuning in the minimal supergravity/CMSSM model with a 125 GeV Higgs boson , 2012, 1210.3019.

[50]  A. Barr,et al.  The race for supersymmetry: Using m T2 for discovery , 2009, 0907.2713.

[51]  The minimal model of nonbaryonic dark matter: A singlet scalar , 2000, hep-ph/0011335.

[52]  He Zhang,et al.  Nonunitarity effects in a realistic low-scale seesaw model , 2009, 0903.1961.

[53]  P. S. Bhupal Dev,et al.  Multi-Lepton Collider Signatures of Heavy Dirac and Majorana Neutrinos , 2011, 1112.6419.

[54]  D. Hauff,et al.  Results from 730 kg days of the CRESST-II Dark Matter search , 2011, 1109.0702.

[55]  S. Farrington,et al.  Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables , 2011, 1101.0593.

[56]  Werner Porod,et al.  SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+e− colliders☆ , 2003, hep-ph/0301101.

[57]  A. Semenov,et al.  micrOMEGAs2.0: A program to calculate the relic density of dark matter in a generic model , 2007, Comput. Phys. Commun..

[58]  A. Djouadi,et al.  The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7+8 TeV LHC , 2013, 1303.6591.

[59]  M. Pospelov,et al.  Higgs decays to dark matter: Beyond the minimal model , 2011, 1109.4872.

[60]  P. S. Bhupal Dev,et al.  Bounds on TeV seesaw models from LHC Higgs data , 2012, 1207.2756.

[61]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[62]  E Aprile,et al.  Dark matter results from 225 live days of XENON100 data. , 2012, Physical review letters.

[63]  The XENON1T Dark Matter Search Experiment , 2019 .

[64]  Florian Staub,et al.  Automatic calculation of supersymmetric renormalization group equations and loop corrections , 2010, Comput. Phys. Commun..

[65]  M. Guchait,et al.  Looking for an Invisible Higgs Signal at the LHC , 2012, 1211.7015.

[66]  Jong Soo Kim,et al.  First LHC constraints on neutralinos , 2012, 1206.3096.

[67]  S. Wu,et al.  The Higgs at last. , 2012, Scientific American.

[68]  Alan D. Martin,et al.  Review of Particle Physics , 2010 .

[69]  G. Senjanovic,et al.  Neutrino Mass and Spontaneous Parity Nonconservation , 1980 .

[70]  T Glanzman,et al.  Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope. , 2011, Physical review letters.

[71]  J. Gunion,et al.  Nonstandard Higgs Boson Decays , 2008, 0801.4554.

[72]  Thorsten Ohl,et al.  A tool box for implementing supersymmetric models , 2011, Comput. Phys. Commun..

[73]  Reid,et al.  Detecting invisible Higgs bosons at the CERN Large Hadron Collider. , 1994, Physical review. D, Particles and fields.

[74]  Debottam Das,et al.  Enhanced Higgs mediated lepton flavour violating processes in the supersymmetric inverse seesaw model , 2011, 1111.5836.

[75]  Z. Xing,et al.  Non-unitary neutrino mixing and CP violation in the minimal inverse seesaw model , 2009, 0905.2889.

[76]  Michele Maltoni,et al.  Phenomenology with Massive Neutrinos , 2007, 0704.1800.

[77]  M. Raidal,et al.  Hints for a nonstandard Higgs boson from the LHC , 2011, 1108.4903.

[78]  P. Nath SUGRA Grand Unification, LHC and dark matter , 2012, 1207.5501.

[79]  Prospects for observing an invisibly decaying Higgs boson in the ${t \bar t H}$ production at the LHC , 2002, hep-ph/0407160.

[80]  Gerard Jungman,et al.  Supersymmetric Dark Matter , 2000 .

[81]  S. Khalil,et al.  Right-handed sneutrino dark matter in supersymmetric B − L model , 2011, 1102.4249.

[82]  J. Gunion,et al.  Higgs couplings at the end of 2012 , 2012, 1212.5244.

[83]  S. Antusch,et al.  Non-standard neutrino interactions with matter from physics beyond the Standard Model , 2008, 0807.1003.

[84]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[85]  R. Mohapatra,et al.  Mechanism for understanding small neutrino mass in superstring theories. , 1986, Physical review letters.

[86]  M. Battaglia,et al.  Constraints on the MSSM from the Higgs sector , 2011, 1112.3032.

[87]  Daniele Dominici,et al.  Invisible Higgs decays from Higgs-graviscalar mixing , 2009, 0902.1512.

[88]  José W. F. Valle,et al.  Neutrino masses in SU(2) ⊗ U(1) theories , 1980 .

[89]  J. Huston,et al.  New generation of parton distributions with uncertainties from global QCD analysis , 2002, hep-ph/0201195.

[90]  L. Roszkowski,et al.  Two ultimate tests of constrained supersymmetry , 2013, 1302.5956.

[91]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[92]  Werner Porod,et al.  SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM , 2011, Comput. Phys. Commun..

[93]  G. Gomez-Ceballos,et al.  Searches for invisibly decaying Higgs bosons with the DELPHI detector at LEP , 2004 .

[94]  Jae Sik Lee,et al.  Higgs precision (Higgcision) era begins , 2013, 1302.3794.

[95]  M. Hirsch,et al.  Sneutrino dark matter in low-scale seesaw scenarios , 2012, 1209.3891.

[96]  T. Teubner,et al.  Z ) re-evaluated using new precise data , 2011 .

[97]  J. Singh,et al.  Search for invisibly decaying Higgs boson at Large Hadron Collider , 2010 .

[98]  J. Shelton,et al.  Measuring the invisible Higgs width at the 7 and 8 TeV LHC , 2011, 1112.4496.

[99]  N. Okada,et al.  Inverse seesaw neutrino signatures at the LHC and ILC , 2012, 1207.3734.

[100]  D O Caldwell,et al.  Silicon detector dark matter results from the final exposure of CDMS II. , 2013, Physical review letters.

[101]  R. Arnowitt,et al.  Applied N=1 Supergravity , 1984 .

[102]  L. Hall Weak Scale Supersymmetry , 1991 .

[103]  M. Hirsch,et al.  Enhancing l i → 3 l j with the Z 0 -penguin , 2012, 1202.1825.

[104]  Shou-hua Zhu Detecting an invisible Higgs boson at Fermilab Tevatron and CERN LHC , 2005, hep-ph/0512055.

[105]  J. Valle,et al.  Global status of neutrino oscillation parameters after Neutrino-2012 , 2012, 1205.4018.

[106]  A. Mazumdar,et al.  Naturalness of light neutralino dark matter in pMSSM after LHC, XENON100 and Planck data , 2013, Journal of High Energy Physics.

[107]  D. Rebuzzi,et al.  Standard model Higgs-boson branching ratios with uncertainties , 2011, 1107.5909.

[108]  B. Mukhopādhyāẏa,et al.  Signals of an invisibly decaying Higgs boson in a scalar dark matter scenario: A study for the Large Hadron Collider , 2011, 1105.5837.

[109]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[110]  D. Choudhury,et al.  Signatures of an invisibly decaying Higgs particle at LHC , 1993, hep-ph/9312347.

[111]  R. Konoplich,et al.  Invisible Higgs boson decay into massive neutrinos of fourth generation , 2003 .

[112]  F. Feroz,et al.  Global Fits of the cMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints , 2012, 1212.2636.

[113]  T. Binoth,et al.  Influence of strongly coupled, hidden scalars on Higgs signals , 1997 .

[114]  Sourov Roy,et al.  Exploring novel correlations in trilepton channels at the LHC for the minimal supersymmetric inverse seesaw model , 2012, 1201.1556.

[115]  K. Griest,et al.  Invisible decays of Higgs bosons in supersymmetric models. , 1988, Physical review. D, Particles and fields.

[116]  P. Belli,et al.  New results from DAMA/LIBRA , 2010, 1002.1028.

[117]  J. Romão,et al.  Minimal supergravity scalar neutrino dark matter and inverse seesaw neutrino masses. , 2008, Physical review letters.

[118]  G. Aad,et al.  Corrigendum to “Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC” [Phys. Lett. B 726 (1–3) (2013) 88] , 2014 .

[119]  B. Mukhopādhyāẏa,et al.  Constraints on invisible Higgs decay in MSSM in the light of diphoton rates from the LHC , 2012, 1202.5190.

[120]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[121]  A. Semenov,et al.  Dark matter direct detection rate in a generic model with micrOMEGAs_2.2 , 2008, Comput. Phys. Commun..

[122]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[123]  R. Godbole,et al.  Higgs boson in the MSSM in light of the LHC , 2011, 1112.2200.

[124]  R. B. Barreiro,et al.  Planck 2013 results , 2014 .

[125]  Alessandro Strumia,et al.  The universal Higgs fit , 2013, 1303.3570.

[126]  P. Minkowski μ→eγ at a rate of one out of 109 muon decays? , 1977 .

[127]  J. Valle,et al.  Enhanced lepton flavor violation in the supersymmetric inverse seesaw model , 2004, hep-ph/0406040.

[128]  Search for `invisible' Higgs signals at LHC via associated production with gauge bosons , 2003, hep-ph/0304137.

[129]  Alan D. Martin,et al.  (g-2)_mu and alpha(M_Z^2) re-evaluated using new precise data , 2011, 1105.3149.

[130]  P. S. Bhupal Dev,et al.  TeV scale inverse seesaw model in SO(10) and leptonic nonunitarity effects , 2009, 0910.3924.

[131]  Enectali Figueroa-Feliciano,et al.  Dark Matter Search Results Using the Silicon Detectors of CDMS II , 2013 .

[132]  F. Boudjema,et al.  The MSSM invisible Higgs in the light of dark matter and g − 2 . , 2001 .

[133]  S. Petcov,et al.  Low energy signatures of the TeV scale seesaw mechanism , 2011, 1103.6217.

[134]  J. Huston,et al.  Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions , 1999, hep-ph/9903282.

[135]  Simon Hayes,et al.  Act 4 , 1998, Romeo and Juliet.

[136]  M. K. Parida,et al.  Inverse Seesaw Mechanism in Nonsupersymmetric SO(10), Proton Lifetime, Nonunitarity Effects, and a Low-mass Z' Boson , 2011, 1112.1826.

[137]  M. Hayakawa,et al.  Tenth-order QED contribution to the electron g-2 and an improved value of the fine structure constant. , 2012, Physical review letters.

[138]  T. Corbett,et al.  Robust Determination of the Higgs Couplings: Power to the Data , 2012, 1211.4580.

[139]  J. Valle,et al.  Enhanced μ−–e− conversion in nuclei in the inverse seesaw model , 2005, hep-ph/0512360.

[140]  L. A. Granado Cardoso,et al.  First evidence for the decay B(s)(0)→μ+ μ-. , 2012, Physical review letters.