Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms.
暂无分享,去创建一个
[1] H. Nikaido. Outer membrane barrier as a mechanism of antimicrobial resistance , 1989, Antimicrobial Agents and Chemotherapy.
[2] K. Poole,et al. Role of the Multidrug Efflux Systems ofPseudomonas aeruginosa in Organic Solvent Tolerance , 1998, Journal of bacteriology.
[3] T. Nishino,et al. nfxC-type quinolone resistance in a clinical isolate of Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.
[4] T. Nakae,et al. Ofloxacin-resistant Pseudomonas aeruginosa mutants with elevated drug extrusion across the inner membrane. , 1991, Biochemical and Biophysical Research Communications - BBRC.
[5] F. Baquero,et al. Carbapenem resistance in Pseudomonas aeruginosa from cystic fibrosis patients. , 1996, The Journal of antimicrobial chemotherapy.
[6] N. Masuda,et al. Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.
[7] K. Poole,et al. Mutational Analysis of the OprM Outer Membrane Component of the MexA-MexB-OprM Multidrug Efflux System ofPseudomonas aeruginosa , 2001, Journal of bacteriology.
[8] J. Burns,et al. Salicylate-inducible antibiotic resistance in Pseudomonas cepacia associated with absence of a pore-forming outer membrane protein , 1992, Antimicrobial Agents and Chemotherapy.
[9] J. D. de Bont,et al. Active Efflux of Organic Solvents byPseudomonas putida S12 Is Induced by Solvents , 1998, Journal of bacteriology.
[10] K. Poole,et al. Contribution of Outer Membrane Efflux Protein OprM to Antibiotic Resistance in Pseudomonas aeruginosa Independent of MexAB , 1998, Antimicrobial Agents and Chemotherapy.
[11] Richard A. Moore,et al. Efflux-Mediated Aminoglycoside and Macrolide Resistance in Burkholderia pseudomallei , 1999, Antimicrobial Agents and Chemotherapy.
[12] N. Gotoh,et al. Rapid identification of mutations in a multidrug efflux pump in Pseudomonas aeruginosa , 1999, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.
[13] K. Poole,et al. Overexpression of the mexC–mexD–oprJ efflux operon in nfxB‐type multidrug‐resistant strains of Pseudomonas aeruginosa , 1996, Molecular microbiology.
[14] M. Bendinelli,et al. Pseudomonas aeruginosa as an Opportunistic Pathogen , 1993, Infectious Agents and Pathogenesis.
[15] D. Livermore,et al. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to beta-lactam resistance , 1994, Antimicrobial Agents and Chemotherapy.
[16] B. Iglewski,et al. Active Efflux and Diffusion Are Involved in Transport of Pseudomonas aeruginosa Cell-to-Cell Signals , 1999, Journal of bacteriology.
[17] T. Köhler,et al. Bacterial Resistance to Quinolones , 2000 .
[18] K. Poole,et al. Expression of Pseudomonas aeruginosa Multidrug Efflux Pumps MexA-MexB-OprM and MexC-MexD-OprJ in a Multidrug-Sensitive Escherichia coli Strain , 1998, Antimicrobial Agents and Chemotherapy.
[19] S. Mitsuhashi,et al. Mechanisms of high-level resistance to quinolones in urinary tract isolates of Pseudomonas aeruginosa , 1994, Antimicrobial Agents and Chemotherapy.
[20] J. Fralick. Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli , 1996, Journal of bacteriology.
[21] S. Mitsuhashi,et al. Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa , 1987, Antimicrobial Agents and Chemotherapy.
[22] H. Yoneyama,et al. Interplay between the efflux pump and the outer membrane permeability barrier in fluorescent dye accumulation in Pseudomonas aeruginosa. , 1999, Biochemical and biophysical research communications.
[23] S. Aronoff,et al. Outer membrane permeability in Pseudomonas cepacia: diminished porin content in a beta-lactam-resistant mutant and in resistant cystic fibrosis isolates , 1988, Antimicrobial Agents and Chemotherapy.
[24] K. Poole,et al. Conservation of the multidrug resistance efflux gene oprM in Pseudomonas aeruginosa , 1997, Antimicrobial agents and chemotherapy.
[25] M. Tsuda,et al. Characterization of the MexC-MexD-OprJ Multidrug Efflux System in ΔmexA-mexB-oprM Mutants of Pseudomonas aeruginosa , 1998, Antimicrobial Agents and Chemotherapy.
[26] S. Lory,et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.
[27] T. Tsuchiya,et al. Expression in Escherichia coli of a New Multidrug Efflux Pump, MexXY, from Pseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.
[28] K. Poole,et al. Influence of the TonB Energy-Coupling Protein on Efflux-Mediated Multidrug Resistance in Pseudomonas aeruginosa , 1998, Antimicrobial Agents and Chemotherapy.
[29] S. Levy,et al. The mar regulon: multiple resistance to antibiotics and other toxic chemicals. , 1999, Trends in microbiology.
[30] M. Saier,et al. Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport , 1994, Molecular microbiology.
[31] N. Gotoh,et al. Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.
[32] H. Nikaido. Multidrug efflux pumps of gram-negative bacteria , 1996, Journal of bacteriology.
[33] A. Simpson,et al. Aminoglycoside and Macrolide Resistance inBurkholderia pseudomallei , 1999, Antimicrobial Agents and Chemotherapy.
[34] D. Dance. Melioidosis: the tip of the iceberg? , 1991, Clinical Microbiology Reviews.
[35] H. Hashimoto,et al. Cloning and characterization of a DNA fragment that complements the nfxB mutation in Pseudomonas aeruginosa PAO. , 1991, FEMS microbiology letters.
[36] A. Brooun,et al. A Dose-Response Study of Antibiotic Resistance inPseudomonas aeruginosa Biofilms , 2000, Antimicrobial Agents and Chemotherapy.
[37] Kendy K. Y. Wong,et al. Insertion Mutagenesis and Membrane Topology Model of the Pseudomonas aeruginosa Outer Membrane Protein OprM , 2000, Journal of bacteriology.
[38] T. Köhler,et al. OprK and OprM define two genetically distinct multidrug efflux systems in Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.
[39] K. Diederichs,et al. Prediction by a Neural Network of Outer Membrane P-strand Protein Topology , 1998 .
[40] G. Church,et al. Alignment and structure prediction of divergent protein families: periplasmic and outer membrane proteins of bacterial efflux pumps. , 1999, Journal of molecular biology.
[41] T. Köhler,et al. Characterization of MexT, the Regulator of the MexE-MexF-OprN Multidrug Efflux System of Pseudomonas aeruginosa , 1999, Journal of bacteriology.
[42] A. Alonso,et al. Cloning and Characterization of SmeDEF, a Novel Multidrug Efflux Pump from Stenotrophomonas maltophilia , 2000, Antimicrobial Agents and Chemotherapy.
[43] E. Bergogne-Bérézin,et al. Susceptibility of Xanthomonas maltophilia to six quinolones and study of outer membrane proteins in resistant mutants selected in vitro , 1992, Antimicrobial Agents and Chemotherapy.
[44] J. D. de Bont,et al. Active efflux of toluene in a solvent-resistant bacterium , 1996, Journal of bacteriology.
[45] Colin Hughes,et al. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export , 2000, Nature.
[46] D. Haas,et al. Resistance of Pseudomonas aeruginosa PAO to nalidixic acid and low levels of beta-lactam antibiotics: mapping of chromosomal genes , 1982, Antimicrobial Agents and Chemotherapy.
[47] K. Poole,et al. Multiple Antibiotic Resistance inStenotrophomonas maltophilia: Involvement of a Multidrug Efflux System , 2000, Antimicrobial Agents and Chemotherapy.
[48] A. Scarpa,et al. Genetic and physiological characterization of ciprofloxacin resistance in Pseudomonas aeruginosa PAO , 1988, Antimicrobial Agents and Chemotherapy.
[49] N. Masuda,et al. Quantitative correlation between susceptibility and OprJ production in NfxB mutants of Pseudomonas aeruginosa , 1996, Antimicrobial agents and chemotherapy.
[50] N. Masuda,et al. Cross-resistance to meropenem, cephems, and quinolones in Pseudomonas aeruginosa , 1992, Antimicrobial Agents and Chemotherapy.
[51] N. Masuda,et al. Interplay between Chromosomal β-Lactamase and the MexAB-OprM Efflux System in Intrinsic Resistance to β-Lactams inPseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.
[52] H. Nikaido,et al. Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa , 1990, Antimicrobial Agents and Chemotherapy.
[53] I. Paulsen,et al. Proton-dependent multidrug efflux systems , 1996, Microbiological reviews.
[54] H. Nikaido. Antibiotic resistance caused by gram-negative multidrug efflux pumps. , 1998, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
[55] K. Horikoshi,et al. Isolation and transposon mutagenesis of a Pseudomonas putida KT2442 toluene-resistant variant: involvement of an efflux system in solvent resistance , 1998, Extremophiles.
[56] T. Nishino,et al. Purification of a 54-kilodalton protein (OprJ) produced in NfxB mutants of Pseudomonas aeruginosa and production of a monoclonal antibody specific to OprJ , 1995, Antimicrobial agents and chemotherapy.
[57] J. Hearst,et al. Efflux pumps and drug resistance in gram-negative bacteria. , 1994, Trends in microbiology.
[58] K. Poole,et al. The MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa is growth-phase regulated. , 1999, FEMS microbiology letters.
[59] N. Masuda,et al. Substrate Specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM Efflux Pumps in Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.
[60] L. Nilsson,et al. Development of quinolone-imipenem cross resistance in Pseudomonas aeruginosa during exposure to ciprofloxacin , 1990, Antimicrobial Agents and Chemotherapy.
[61] P. Delepelaire,et al. TolC, an Escherichia coli outer membrane protein required for hemolysin secretion. , 1990, Proceedings of the National Academy of Sciences of the United States of America.
[62] K. Poole,et al. The outer membrane protein OprM of Pseudomonas aeruginosa is encoded by oprK of the mexA-mexB-oprK multidrug resistance operon , 1995, Antimicrobial agents and chemotherapy.
[63] S. Nakamura,et al. Proportion of DNA gyrase mutants among quinolone-resistant strains of Pseudomonas aeruginosa , 1990, Antimicrobial Agents and Chemotherapy.
[64] H. Yoneyama,et al. Use of Fluorescence Probes to Monitor Function of the Subunit Proteins of the MexA-MexB-OprM Drug Extrusion Machinery inPseudomonas aeruginosa * , 1997, The Journal of Biological Chemistry.
[65] Juan L. Ramos,et al. Efflux Pumps Involved in Toluene Tolerance in Pseudomonas putida DOT-T1E , 1998, Journal of bacteriology.
[66] T. Nishino,et al. Topological analysis of an RND family transporter, MexD of Pseudomonas aeruginosa , 1999, FEBS letters.
[67] K. Poole,et al. β-Lactamase Inhibitors Are Substrates for the Multidrug Efflux Pumps of Pseudomonas aeruginosa , 1998, Antimicrobial Agents and Chemotherapy.
[68] K. Poole,et al. Multidrug efflux in Pseudomonas aeruginosa: components, mechanisms and clinical significance. , 2001, Current topics in medicinal chemistry.
[69] A. Alonso,et al. Multiple antibiotic resistance in Stenotrophomonas maltophilia , 1997, Antimicrobial agents and chemotherapy.
[70] D. Lim,et al. Isolation and Characterization of Toluene-Sensitive Mutants from the Toluene-Resistant Bacterium Pseudomonas putida GM 73 , 1998 .
[71] K. Ishiguro,et al. Purification and Characterization of the Pseudomonas aeruginosa NfxB Protein, the Negative Regulator of the nfxB Gene , 2022 .
[72] L. Tzouvelekis,et al. Outer membrane alterations in multiresistant mutants of Pseudomonas aeruginosa selected by ciprofloxacin , 1989, Antimicrobial Agents and Chemotherapy.
[73] K. Poole,et al. Influence of Mutations in the mexR Repressor Gene on Expression of the MexA-MexB-OprM Multidrug Efflux System ofPseudomonas aeruginosa , 2000, Journal of bacteriology.
[74] Gerben J. Zylstra,et al. Identification and Molecular Characterization of an Efflux Pump Involved in Pseudomonas putida S12 Solvent Tolerance* , 1998, The Journal of Biological Chemistry.
[75] R. Hancock,et al. A pleiotropic, posttherapy, enoxacin-resistant mutant of Pseudomonas aeruginosa , 1992, Antimicrobial Agents and Chemotherapy.
[76] T. Köhler,et al. Carbapenem Activities against Pseudomonas aeruginosa: Respective Contributions of OprD and Efflux Systems , 1999, Antimicrobial Agents and Chemotherapy.
[77] T. Renau,et al. Inhibitors of efflux pumps in Pseudomonas aeruginosa potentiate the activity of the fluoroquinolone antibacterial levofloxacin. , 1999, Journal of medicinal chemistry.
[78] P. Kaulfers,et al. Association of qacE and qacEDelta1 with multiple resistance to antibiotics and antiseptics in clinical isolates of Gram-negative bacteria. , 2000, FEMS microbiology letters.
[79] H. Yoneyama,et al. nalB-type mutations causing the overexpression of the MexAB-OprM efflux pump are located in the mexR gene of the Pseudomonas aeruginosa chromosome. , 1999, FEMS microbiology letters.
[80] H. Yoneyama,et al. The Role ofmex-Gene Products in Antibiotic Extrusion inPseudomonas aeruginosa , 1997 .
[81] H. Nikaido,et al. Involvement of an Active Efflux System in the Natural Resistance of Pseudomonas aeruginosa to Aminoglycosides , 1999, Antimicrobial Agents and Chemotherapy.
[82] P. Vandamme,et al. Burkholderia cepacia: medical, taxonomic and ecological issues. , 1996, Journal of medical microbiology.
[83] M. Ehrmann,et al. Membrane Topology of the Xenobiotic-exporting Subunit, MexB, of the MexA,B-OprM Extrusion Pump in Pseudomonas aeruginosa * , 1999, The Journal of Biological Chemistry.
[84] Kendy K. Y. Wong,et al. Evaluation of a Structural Model ofPseudomonas aeruginosa Outer Membrane Protein OprM, an Efflux Component Involved in Intrinsic Antibiotic Resistance , 2001, Journal of bacteriology.
[85] J. Burns,et al. Nucleotide sequence analysis of a gene from Burkholderia (Pseudomonas) cepacia encoding an outer membrane lipoprotein involved in multiple antibiotic resistance , 1996, Antimicrobial agents and chemotherapy.
[86] D. Sherman,et al. Characterization of a Pseudomonas aeruginosa Efflux Pump Contributing to Aminoglycoside Impermeability , 1999, Antimicrobial Agents and Chemotherapy.
[87] A. Brooun,et al. A Dose-Response Study of Antibiotic Resistance in Pseudomonas aeruginosa Biofilms , 2000 .
[88] N. Høiby,et al. Molecular Mechanisms of Fluoroquinolone Resistance in Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients , 2000, Antimicrobial Agents and Chemotherapy.
[89] X. Li,et al. Organic solvent-tolerant mutants of Pseudomonas aeruginosa display multiple antibiotic resistance. , 1999, Canadian journal of microbiology.
[90] K. Poole,et al. MexR Repressor of the mexAB-oprMMultidrug Efflux Operon of Pseudomonas aeruginosa: Identification of MexR Binding Sites in the mexA-mexRIntergenic Region , 2001, Journal of bacteriology.
[91] K. Horikoshi,et al. A Pseudomonas thrives in high concentrations of toluene , 1989, Nature.
[92] R. A. Celesk,et al. Factors influencing the accumulation of ciprofloxacin in Pseudomonas aeruginosa , 1989, Antimicrobial Agents and Chemotherapy.
[93] D. Lim,et al. Isolation and Characterization of Toluene-Sensitive Mutants from the Toluene-Resistant Bacterium Pseudomonas putida GM73 , 1998, Journal of bacteriology.
[94] H. Yoneyama,et al. Resistance to β-Lactam Antibiotics inPseudomonas aeruginosa Due to Interplay between the MexAB-OprM Efflux Pump and β-Lactamase , 1999, Antimicrobial Agents and Chemotherapy.
[95] K. Poole,et al. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon , 1993, Journal of bacteriology.
[96] H. Nikaido,et al. Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.
[97] B. Wretlind,et al. Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. , 1998, Microbial drug resistance.
[98] K. Poole,et al. Influence of the MexAB-OprM Multidrug Efflux System on Quorum Sensing in Pseudomonas aeruginosa , 1998, Journal of bacteriology.
[99] J. Burns,et al. Chloramphenicol resistance in Pseudomonas cepacia because of decreased permeability , 1989, Antimicrobial Agents and Chemotherapy.
[100] H. Yoneyama,et al. Function of the Membrane Fusion Protein, MexA, of the MexA, B-OprM Efflux Pump in Pseudomonas aeruginosa without an Anchoring Membrane* , 2000, The Journal of Biological Chemistry.
[101] D. Heinrichs,et al. Cloning and sequence analysis of an EnvCD homologue in Pseudomonas aeruginosa: regulation by iron and possible involvement in the secretion of the siderophore pyoverdine , 1993, Molecular microbiology.
[102] X. Li,et al. Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa. , 2000, The Journal of antimicrobial chemotherapy.
[103] I. Paulsen,et al. The 3' conserved segment of integrons contains a gene associated with multidrug resistance to antiseptics and disinfectants , 1993, Antimicrobial Agents and Chemotherapy.
[104] Angela Lee,et al. Use of a Genetic Approach To Evaluate the Consequences of Inhibition of Efflux Pumps in Pseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.
[105] X. Li,et al. Influence of the MexA-MexB-oprM multidrug efflux system on expression of the MexC-MexD-oprJ and MexE-MexF-oprN multidrug efflux systems in Pseudomonas aeruginosa. , 2000, The Journal of antimicrobial chemotherapy.
[106] D. Heinrichs,et al. Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression , 1996, Antimicrobial agents and chemotherapy.
[107] H. Yoneyama,et al. Subunit swapping in the Mex-extrusion pumps in Pseudomonas aeruginosa. , 1998, Biochemical and biophysical research communications.
[108] T. Köhler,et al. In Vivo Emergence of Multidrug-Resistant Mutants ofPseudomonas aeruginosa Overexpressing the Active Efflux System MexA-MexB-OprM , 1999, Antimicrobial Agents and Chemotherapy.
[109] J. Hearst,et al. Molecular cloning and characterization of acrA and acrE genes of Escherichia coli , 1993, Journal of bacteriology.
[110] H. Hashimoto,et al. Drug resistance of Pseudomonas aeruginosa with special reference to new quinolones. , 1991, Antibiotics and chemotherapy.
[111] H. Yoneyama,et al. The role of mex-gene products in antibiotic extrusion in Pseudomonas aeruginosa. , 1997, Biochemical and biophysical research communications.
[112] T. Okazaki,et al. Cloning and nucleotide sequence of the Pseudomonas aeruginosa nfxB gene, conferring resistance to new quinolones. , 1992, FEMS microbiology letters.
[113] K. Poole. Efflux-Mediated Resistance to Fluoroquinolones in Gram-Negative Bacteria , 2000, Antimicrobial Agents and Chemotherapy.
[114] H. Hashimoto,et al. Occurrence of the nfxB type mutation in clinical isolates of Pseudomonas aeruginosa , 1992, Antimicrobial Agents and Chemotherapy.
[115] K. Poole,et al. Contribution of the MexAB-OprM multidrug efflux system to the beta-lactam resistance of penicillin-binding protein and beta-lactamase-derepressed mutants of Pseudomonas aeruginosa. , 1999, The Journal of antimicrobial chemotherapy.
[116] H. Schweizer. Intrinsic Resistance to Inhibitors of Fatty Acid Biosynthesis in Pseudomonas aeruginosa Is Due to Efflux: Application of a Novel Technique for Generation of Unmarked Chromosomal Mutations for the Study of Efflux Systems , 1998, Antimicrobial Agents and Chemotherapy.
[117] R. Hancock,et al. Influence of OprM expression on multiple antibiotic resistance in Pseudomonas aeruginosa , 1997, Antimicrobial agents and chemotherapy.
[118] R. Hancock,et al. Negative Regulation of the Pseudomonas aeruginosa Outer Membrane Porin OprD Selective for Imipenem and Basic Amino Acids , 1999, Antimicrobial Agents and Chemotherapy.
[119] H. Yoneyama,et al. Assignment of the Substrate-Selective Subunits of the MexEF-OprN Multidrug Efflux Pump of Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.
[120] A. Alonso,et al. Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa. , 1999, Microbiology.
[121] J. Ramos,et al. A Set of Genes Encoding a Second Toluene Efflux System in Pseudomonas putida DOT-T1E Is Linked to the tod Genes for Toluene Metabolism , 2000, Journal of bacteriology.
[122] K. Kerr,et al. Microbiological and Clinical Aspects of Infection Associated with Stenotrophomonas maltophilia , 1998, Clinical Microbiology Reviews.
[123] J. Rosner,et al. Binding of purified multiple antibiotic-resistance repressor protein (MarR) to mar operator sequences. , 1995, Proceedings of the National Academy of Sciences of the United States of America.
[124] J. Hwang,et al. Interactions of dedicated export membrane proteins of the colicin V secretion system: CvaA, a member of the membrane fusion protein family, interacts with CvaB and TolC , 1997, Journal of bacteriology.
[125] M. Kok,et al. Multidrug efflux in intrinsic resistance to trimethoprim and sulfamethoxazole in Pseudomonas aeruginosa , 1996, Antimicrobial agents and chemotherapy.
[126] T. Köhler,et al. Differential selection of multidrug efflux systems by quinolones in Pseudomonas aeruginosa , 1997, Antimicrobial agents and chemotherapy.
[127] H. Fukuda,et al. New norfloxacin resistance gene in Pseudomonas aeruginosa PAO , 1990, Antimicrobial Agents and Chemotherapy.
[128] X. Li,et al. Inner membrane efflux components are responsible for beta-lactam specificity of multidrug efflux pumps in Pseudomonas aeruginosa , 1997, Journal of bacteriology.
[129] Angela Lee,et al. Identification and Characterization of Inhibitors of Multidrug Resistance Efflux Pumps in Pseudomonas aeruginosa: Novel Agents for Combination Therapy , 2001, Antimicrobial Agents and Chemotherapy.
[130] P. Miller,et al. Overlaps and parallels in the regulation of intrinsic multiple‐antibiotic resistance in Escherichia coli , 1996, Molecular microbiology.
[131] H. Yoneyama,et al. Localization of the Outer Membrane Subunit OprM of Resistance-Nodulation-Cell Division Family Multicomponent Efflux Pump in Pseudomonas aeruginosa* , 2000, The Journal of Biological Chemistry.