Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms.

Pseudomonas aeruginosa is an opportunistic human pathogen characterized by an innate resistance to multiple antimicrobial agents. A major contribution to this intrinsic multidrug resistance is provided by a number of broadly-specific multidrug efflux systems, including MexAB-OprM and MexXY-OprM. In addition, these and two additional tripartite efflux systems, MexCD-OprJ and MexEF-OprN, promote acquired multidrug resistance as a result of mutational hyperexpression of the efflux genes. In addition to antibiotics, these pumps promote export of numerous dyes, detergents, inhibitors, disinfectants, organic solvents and homoserine lactones involved in quorum sensing. The efflux pump proteins are highly homologous and consist of a cytoplasmic membrane-associated drug-proton antiporter of the Resistance-Nodulation-Division (RND) family, an outer membrane channel-forming protein [sometimes called outer membrane factor (OMF)] and a periplasmic membrane fusion protein (MFP). Homologues of these systems have been described in Stenotrophomonas maltophilia, Burkholderia cepacia, Burkholderia pseudomallei and the non-pathogen Pseudomonas putida, where they play a role in export of and resistance to multiple antimicrobial agents and/or organic solvents. Although the natural function of these multidrug efflux systems is largely unknown, their contribution to antibiotic resistance and their conservation in a number of important human pathogens makes them logical targets for therapeutic intervention.

[1]  H. Nikaido Outer membrane barrier as a mechanism of antimicrobial resistance , 1989, Antimicrobial Agents and Chemotherapy.

[2]  K. Poole,et al.  Role of the Multidrug Efflux Systems ofPseudomonas aeruginosa in Organic Solvent Tolerance , 1998, Journal of bacteriology.

[3]  T. Nishino,et al.  nfxC-type quinolone resistance in a clinical isolate of Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.

[4]  T. Nakae,et al.  Ofloxacin-resistant Pseudomonas aeruginosa mutants with elevated drug extrusion across the inner membrane. , 1991, Biochemical and Biophysical Research Communications - BBRC.

[5]  F. Baquero,et al.  Carbapenem resistance in Pseudomonas aeruginosa from cystic fibrosis patients. , 1996, The Journal of antimicrobial chemotherapy.

[6]  N. Masuda,et al.  Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.

[7]  K. Poole,et al.  Mutational Analysis of the OprM Outer Membrane Component of the MexA-MexB-OprM Multidrug Efflux System ofPseudomonas aeruginosa , 2001, Journal of bacteriology.

[8]  J. Burns,et al.  Salicylate-inducible antibiotic resistance in Pseudomonas cepacia associated with absence of a pore-forming outer membrane protein , 1992, Antimicrobial Agents and Chemotherapy.

[9]  J. D. de Bont,et al.  Active Efflux of Organic Solvents byPseudomonas putida S12 Is Induced by Solvents , 1998, Journal of bacteriology.

[10]  K. Poole,et al.  Contribution of Outer Membrane Efflux Protein OprM to Antibiotic Resistance in Pseudomonas aeruginosa Independent of MexAB , 1998, Antimicrobial Agents and Chemotherapy.

[11]  Richard A. Moore,et al.  Efflux-Mediated Aminoglycoside and Macrolide Resistance in Burkholderia pseudomallei , 1999, Antimicrobial Agents and Chemotherapy.

[12]  N. Gotoh,et al.  Rapid identification of mutations in a multidrug efflux pump in Pseudomonas aeruginosa , 1999, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[13]  K. Poole,et al.  Overexpression of the mexC–mexD–oprJ efflux operon in nfxB‐type multidrug‐resistant strains of Pseudomonas aeruginosa , 1996, Molecular microbiology.

[14]  M. Bendinelli,et al.  Pseudomonas aeruginosa as an Opportunistic Pathogen , 1993, Infectious Agents and Pathogenesis.

[15]  D. Livermore,et al.  Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to beta-lactam resistance , 1994, Antimicrobial Agents and Chemotherapy.

[16]  B. Iglewski,et al.  Active Efflux and Diffusion Are Involved in Transport of Pseudomonas aeruginosa Cell-to-Cell Signals , 1999, Journal of bacteriology.

[17]  T. Köhler,et al.  Bacterial Resistance to Quinolones , 2000 .

[18]  K. Poole,et al.  Expression of Pseudomonas aeruginosa Multidrug Efflux Pumps MexA-MexB-OprM and MexC-MexD-OprJ in a Multidrug-Sensitive Escherichia coli Strain , 1998, Antimicrobial Agents and Chemotherapy.

[19]  S. Mitsuhashi,et al.  Mechanisms of high-level resistance to quinolones in urinary tract isolates of Pseudomonas aeruginosa , 1994, Antimicrobial Agents and Chemotherapy.

[20]  J. Fralick Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli , 1996, Journal of bacteriology.

[21]  S. Mitsuhashi,et al.  Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa , 1987, Antimicrobial Agents and Chemotherapy.

[22]  H. Yoneyama,et al.  Interplay between the efflux pump and the outer membrane permeability barrier in fluorescent dye accumulation in Pseudomonas aeruginosa. , 1999, Biochemical and biophysical research communications.

[23]  S. Aronoff,et al.  Outer membrane permeability in Pseudomonas cepacia: diminished porin content in a beta-lactam-resistant mutant and in resistant cystic fibrosis isolates , 1988, Antimicrobial Agents and Chemotherapy.

[24]  K. Poole,et al.  Conservation of the multidrug resistance efflux gene oprM in Pseudomonas aeruginosa , 1997, Antimicrobial agents and chemotherapy.

[25]  M. Tsuda,et al.  Characterization of the MexC-MexD-OprJ Multidrug Efflux System in ΔmexA-mexB-oprM Mutants of Pseudomonas aeruginosa , 1998, Antimicrobial Agents and Chemotherapy.

[26]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[27]  T. Tsuchiya,et al.  Expression in Escherichia coli of a New Multidrug Efflux Pump, MexXY, from Pseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.

[28]  K. Poole,et al.  Influence of the TonB Energy-Coupling Protein on Efflux-Mediated Multidrug Resistance in Pseudomonas aeruginosa , 1998, Antimicrobial Agents and Chemotherapy.

[29]  S. Levy,et al.  The mar regulon: multiple resistance to antibiotics and other toxic chemicals. , 1999, Trends in microbiology.

[30]  M. Saier,et al.  Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport , 1994, Molecular microbiology.

[31]  N. Gotoh,et al.  Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.

[32]  H. Nikaido Multidrug efflux pumps of gram-negative bacteria , 1996, Journal of bacteriology.

[33]  A. Simpson,et al.  Aminoglycoside and Macrolide Resistance inBurkholderia pseudomallei , 1999, Antimicrobial Agents and Chemotherapy.

[34]  D. Dance Melioidosis: the tip of the iceberg? , 1991, Clinical Microbiology Reviews.

[35]  H. Hashimoto,et al.  Cloning and characterization of a DNA fragment that complements the nfxB mutation in Pseudomonas aeruginosa PAO. , 1991, FEMS microbiology letters.

[36]  A. Brooun,et al.  A Dose-Response Study of Antibiotic Resistance inPseudomonas aeruginosa Biofilms , 2000, Antimicrobial Agents and Chemotherapy.

[37]  Kendy K. Y. Wong,et al.  Insertion Mutagenesis and Membrane Topology Model of the Pseudomonas aeruginosa Outer Membrane Protein OprM , 2000, Journal of bacteriology.

[38]  T. Köhler,et al.  OprK and OprM define two genetically distinct multidrug efflux systems in Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.

[39]  K. Diederichs,et al.  Prediction by a Neural Network of Outer Membrane P-strand Protein Topology , 1998 .

[40]  G. Church,et al.  Alignment and structure prediction of divergent protein families: periplasmic and outer membrane proteins of bacterial efflux pumps. , 1999, Journal of molecular biology.

[41]  T. Köhler,et al.  Characterization of MexT, the Regulator of the MexE-MexF-OprN Multidrug Efflux System of Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[42]  A. Alonso,et al.  Cloning and Characterization of SmeDEF, a Novel Multidrug Efflux Pump from Stenotrophomonas maltophilia , 2000, Antimicrobial Agents and Chemotherapy.

[43]  E. Bergogne-Bérézin,et al.  Susceptibility of Xanthomonas maltophilia to six quinolones and study of outer membrane proteins in resistant mutants selected in vitro , 1992, Antimicrobial Agents and Chemotherapy.

[44]  J. D. de Bont,et al.  Active efflux of toluene in a solvent-resistant bacterium , 1996, Journal of bacteriology.

[45]  Colin Hughes,et al.  Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export , 2000, Nature.

[46]  D. Haas,et al.  Resistance of Pseudomonas aeruginosa PAO to nalidixic acid and low levels of beta-lactam antibiotics: mapping of chromosomal genes , 1982, Antimicrobial Agents and Chemotherapy.

[47]  K. Poole,et al.  Multiple Antibiotic Resistance inStenotrophomonas maltophilia: Involvement of a Multidrug Efflux System , 2000, Antimicrobial Agents and Chemotherapy.

[48]  A. Scarpa,et al.  Genetic and physiological characterization of ciprofloxacin resistance in Pseudomonas aeruginosa PAO , 1988, Antimicrobial Agents and Chemotherapy.

[49]  N. Masuda,et al.  Quantitative correlation between susceptibility and OprJ production in NfxB mutants of Pseudomonas aeruginosa , 1996, Antimicrobial agents and chemotherapy.

[50]  N. Masuda,et al.  Cross-resistance to meropenem, cephems, and quinolones in Pseudomonas aeruginosa , 1992, Antimicrobial Agents and Chemotherapy.

[51]  N. Masuda,et al.  Interplay between Chromosomal β-Lactamase and the MexAB-OprM Efflux System in Intrinsic Resistance to β-Lactams inPseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.

[52]  H. Nikaido,et al.  Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa , 1990, Antimicrobial Agents and Chemotherapy.

[53]  I. Paulsen,et al.  Proton-dependent multidrug efflux systems , 1996, Microbiological reviews.

[54]  H. Nikaido Antibiotic resistance caused by gram-negative multidrug efflux pumps. , 1998, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[55]  K. Horikoshi,et al.  Isolation and transposon mutagenesis of a Pseudomonas putida KT2442 toluene-resistant variant: involvement of an efflux system in solvent resistance , 1998, Extremophiles.

[56]  T. Nishino,et al.  Purification of a 54-kilodalton protein (OprJ) produced in NfxB mutants of Pseudomonas aeruginosa and production of a monoclonal antibody specific to OprJ , 1995, Antimicrobial agents and chemotherapy.

[57]  J. Hearst,et al.  Efflux pumps and drug resistance in gram-negative bacteria. , 1994, Trends in microbiology.

[58]  K. Poole,et al.  The MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa is growth-phase regulated. , 1999, FEMS microbiology letters.

[59]  N. Masuda,et al.  Substrate Specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM Efflux Pumps in Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.

[60]  L. Nilsson,et al.  Development of quinolone-imipenem cross resistance in Pseudomonas aeruginosa during exposure to ciprofloxacin , 1990, Antimicrobial Agents and Chemotherapy.

[61]  P. Delepelaire,et al.  TolC, an Escherichia coli outer membrane protein required for hemolysin secretion. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[62]  K. Poole,et al.  The outer membrane protein OprM of Pseudomonas aeruginosa is encoded by oprK of the mexA-mexB-oprK multidrug resistance operon , 1995, Antimicrobial agents and chemotherapy.

[63]  S. Nakamura,et al.  Proportion of DNA gyrase mutants among quinolone-resistant strains of Pseudomonas aeruginosa , 1990, Antimicrobial Agents and Chemotherapy.

[64]  H. Yoneyama,et al.  Use of Fluorescence Probes to Monitor Function of the Subunit Proteins of the MexA-MexB-OprM Drug Extrusion Machinery inPseudomonas aeruginosa * , 1997, The Journal of Biological Chemistry.

[65]  Juan L. Ramos,et al.  Efflux Pumps Involved in Toluene Tolerance in Pseudomonas putida DOT-T1E , 1998, Journal of bacteriology.

[66]  T. Nishino,et al.  Topological analysis of an RND family transporter, MexD of Pseudomonas aeruginosa , 1999, FEBS letters.

[67]  K. Poole,et al.  β-Lactamase Inhibitors Are Substrates for the Multidrug Efflux Pumps of Pseudomonas aeruginosa , 1998, Antimicrobial Agents and Chemotherapy.

[68]  K. Poole,et al.  Multidrug efflux in Pseudomonas aeruginosa: components, mechanisms and clinical significance. , 2001, Current topics in medicinal chemistry.

[69]  A. Alonso,et al.  Multiple antibiotic resistance in Stenotrophomonas maltophilia , 1997, Antimicrobial agents and chemotherapy.

[70]  D. Lim,et al.  Isolation and Characterization of Toluene-Sensitive Mutants from the Toluene-Resistant Bacterium Pseudomonas putida GM 73 , 1998 .

[71]  K. Ishiguro,et al.  Purification and Characterization of the Pseudomonas aeruginosa NfxB Protein, the Negative Regulator of the nfxB Gene , 2022 .

[72]  L. Tzouvelekis,et al.  Outer membrane alterations in multiresistant mutants of Pseudomonas aeruginosa selected by ciprofloxacin , 1989, Antimicrobial Agents and Chemotherapy.

[73]  K. Poole,et al.  Influence of Mutations in the mexR Repressor Gene on Expression of the MexA-MexB-OprM Multidrug Efflux System ofPseudomonas aeruginosa , 2000, Journal of bacteriology.

[74]  Gerben J. Zylstra,et al.  Identification and Molecular Characterization of an Efflux Pump Involved in Pseudomonas putida S12 Solvent Tolerance* , 1998, The Journal of Biological Chemistry.

[75]  R. Hancock,et al.  A pleiotropic, posttherapy, enoxacin-resistant mutant of Pseudomonas aeruginosa , 1992, Antimicrobial Agents and Chemotherapy.

[76]  T. Köhler,et al.  Carbapenem Activities against Pseudomonas aeruginosa: Respective Contributions of OprD and Efflux Systems , 1999, Antimicrobial Agents and Chemotherapy.

[77]  T. Renau,et al.  Inhibitors of efflux pumps in Pseudomonas aeruginosa potentiate the activity of the fluoroquinolone antibacterial levofloxacin. , 1999, Journal of medicinal chemistry.

[78]  P. Kaulfers,et al.  Association of qacE and qacEDelta1 with multiple resistance to antibiotics and antiseptics in clinical isolates of Gram-negative bacteria. , 2000, FEMS microbiology letters.

[79]  H. Yoneyama,et al.  nalB-type mutations causing the overexpression of the MexAB-OprM efflux pump are located in the mexR gene of the Pseudomonas aeruginosa chromosome. , 1999, FEMS microbiology letters.

[80]  H. Yoneyama,et al.  The Role ofmex-Gene Products in Antibiotic Extrusion inPseudomonas aeruginosa , 1997 .

[81]  H. Nikaido,et al.  Involvement of an Active Efflux System in the Natural Resistance of Pseudomonas aeruginosa to Aminoglycosides , 1999, Antimicrobial Agents and Chemotherapy.

[82]  P. Vandamme,et al.  Burkholderia cepacia: medical, taxonomic and ecological issues. , 1996, Journal of medical microbiology.

[83]  M. Ehrmann,et al.  Membrane Topology of the Xenobiotic-exporting Subunit, MexB, of the MexA,B-OprM Extrusion Pump in Pseudomonas aeruginosa * , 1999, The Journal of Biological Chemistry.

[84]  Kendy K. Y. Wong,et al.  Evaluation of a Structural Model ofPseudomonas aeruginosa Outer Membrane Protein OprM, an Efflux Component Involved in Intrinsic Antibiotic Resistance , 2001, Journal of bacteriology.

[85]  J. Burns,et al.  Nucleotide sequence analysis of a gene from Burkholderia (Pseudomonas) cepacia encoding an outer membrane lipoprotein involved in multiple antibiotic resistance , 1996, Antimicrobial agents and chemotherapy.

[86]  D. Sherman,et al.  Characterization of a Pseudomonas aeruginosa Efflux Pump Contributing to Aminoglycoside Impermeability , 1999, Antimicrobial Agents and Chemotherapy.

[87]  A. Brooun,et al.  A Dose-Response Study of Antibiotic Resistance in Pseudomonas aeruginosa Biofilms , 2000 .

[88]  N. Høiby,et al.  Molecular Mechanisms of Fluoroquinolone Resistance in Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients , 2000, Antimicrobial Agents and Chemotherapy.

[89]  X. Li,et al.  Organic solvent-tolerant mutants of Pseudomonas aeruginosa display multiple antibiotic resistance. , 1999, Canadian journal of microbiology.

[90]  K. Poole,et al.  MexR Repressor of the mexAB-oprMMultidrug Efflux Operon of Pseudomonas aeruginosa: Identification of MexR Binding Sites in the mexA-mexRIntergenic Region , 2001, Journal of bacteriology.

[91]  K. Horikoshi,et al.  A Pseudomonas thrives in high concentrations of toluene , 1989, Nature.

[92]  R. A. Celesk,et al.  Factors influencing the accumulation of ciprofloxacin in Pseudomonas aeruginosa , 1989, Antimicrobial Agents and Chemotherapy.

[93]  D. Lim,et al.  Isolation and Characterization of Toluene-Sensitive Mutants from the Toluene-Resistant Bacterium Pseudomonas putida GM73 , 1998, Journal of bacteriology.

[94]  H. Yoneyama,et al.  Resistance to β-Lactam Antibiotics inPseudomonas aeruginosa Due to Interplay between the MexAB-OprM Efflux Pump and β-Lactamase , 1999, Antimicrobial Agents and Chemotherapy.

[95]  K. Poole,et al.  Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon , 1993, Journal of bacteriology.

[96]  H. Nikaido,et al.  Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.

[97]  B. Wretlind,et al.  Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. , 1998, Microbial drug resistance.

[98]  K. Poole,et al.  Influence of the MexAB-OprM Multidrug Efflux System on Quorum Sensing in Pseudomonas aeruginosa , 1998, Journal of bacteriology.

[99]  J. Burns,et al.  Chloramphenicol resistance in Pseudomonas cepacia because of decreased permeability , 1989, Antimicrobial Agents and Chemotherapy.

[100]  H. Yoneyama,et al.  Function of the Membrane Fusion Protein, MexA, of the MexA, B-OprM Efflux Pump in Pseudomonas aeruginosa without an Anchoring Membrane* , 2000, The Journal of Biological Chemistry.

[101]  D. Heinrichs,et al.  Cloning and sequence analysis of an EnvCD homologue in Pseudomonas aeruginosa: regulation by iron and possible involvement in the secretion of the siderophore pyoverdine , 1993, Molecular microbiology.

[102]  X. Li,et al.  Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa. , 2000, The Journal of antimicrobial chemotherapy.

[103]  I. Paulsen,et al.  The 3' conserved segment of integrons contains a gene associated with multidrug resistance to antiseptics and disinfectants , 1993, Antimicrobial Agents and Chemotherapy.

[104]  Angela Lee,et al.  Use of a Genetic Approach To Evaluate the Consequences of Inhibition of Efflux Pumps in Pseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.

[105]  X. Li,et al.  Influence of the MexA-MexB-oprM multidrug efflux system on expression of the MexC-MexD-oprJ and MexE-MexF-oprN multidrug efflux systems in Pseudomonas aeruginosa. , 2000, The Journal of antimicrobial chemotherapy.

[106]  D. Heinrichs,et al.  Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression , 1996, Antimicrobial agents and chemotherapy.

[107]  H. Yoneyama,et al.  Subunit swapping in the Mex-extrusion pumps in Pseudomonas aeruginosa. , 1998, Biochemical and biophysical research communications.

[108]  T. Köhler,et al.  In Vivo Emergence of Multidrug-Resistant Mutants ofPseudomonas aeruginosa Overexpressing the Active Efflux System MexA-MexB-OprM , 1999, Antimicrobial Agents and Chemotherapy.

[109]  J. Hearst,et al.  Molecular cloning and characterization of acrA and acrE genes of Escherichia coli , 1993, Journal of bacteriology.

[110]  H. Hashimoto,et al.  Drug resistance of Pseudomonas aeruginosa with special reference to new quinolones. , 1991, Antibiotics and chemotherapy.

[111]  H. Yoneyama,et al.  The role of mex-gene products in antibiotic extrusion in Pseudomonas aeruginosa. , 1997, Biochemical and biophysical research communications.

[112]  T. Okazaki,et al.  Cloning and nucleotide sequence of the Pseudomonas aeruginosa nfxB gene, conferring resistance to new quinolones. , 1992, FEMS microbiology letters.

[113]  K. Poole Efflux-Mediated Resistance to Fluoroquinolones in Gram-Negative Bacteria , 2000, Antimicrobial Agents and Chemotherapy.

[114]  H. Hashimoto,et al.  Occurrence of the nfxB type mutation in clinical isolates of Pseudomonas aeruginosa , 1992, Antimicrobial Agents and Chemotherapy.

[115]  K. Poole,et al.  Contribution of the MexAB-OprM multidrug efflux system to the beta-lactam resistance of penicillin-binding protein and beta-lactamase-derepressed mutants of Pseudomonas aeruginosa. , 1999, The Journal of antimicrobial chemotherapy.

[116]  H. Schweizer Intrinsic Resistance to Inhibitors of Fatty Acid Biosynthesis in Pseudomonas aeruginosa Is Due to Efflux: Application of a Novel Technique for Generation of Unmarked Chromosomal Mutations for the Study of Efflux Systems , 1998, Antimicrobial Agents and Chemotherapy.

[117]  R. Hancock,et al.  Influence of OprM expression on multiple antibiotic resistance in Pseudomonas aeruginosa , 1997, Antimicrobial agents and chemotherapy.

[118]  R. Hancock,et al.  Negative Regulation of the Pseudomonas aeruginosa Outer Membrane Porin OprD Selective for Imipenem and Basic Amino Acids , 1999, Antimicrobial Agents and Chemotherapy.

[119]  H. Yoneyama,et al.  Assignment of the Substrate-Selective Subunits of the MexEF-OprN Multidrug Efflux Pump of Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.

[120]  A. Alonso,et al.  Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa. , 1999, Microbiology.

[121]  J. Ramos,et al.  A Set of Genes Encoding a Second Toluene Efflux System in Pseudomonas putida DOT-T1E Is Linked to the tod Genes for Toluene Metabolism , 2000, Journal of bacteriology.

[122]  K. Kerr,et al.  Microbiological and Clinical Aspects of Infection Associated with Stenotrophomonas maltophilia , 1998, Clinical Microbiology Reviews.

[123]  J. Rosner,et al.  Binding of purified multiple antibiotic-resistance repressor protein (MarR) to mar operator sequences. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[124]  J. Hwang,et al.  Interactions of dedicated export membrane proteins of the colicin V secretion system: CvaA, a member of the membrane fusion protein family, interacts with CvaB and TolC , 1997, Journal of bacteriology.

[125]  M. Kok,et al.  Multidrug efflux in intrinsic resistance to trimethoprim and sulfamethoxazole in Pseudomonas aeruginosa , 1996, Antimicrobial agents and chemotherapy.

[126]  T. Köhler,et al.  Differential selection of multidrug efflux systems by quinolones in Pseudomonas aeruginosa , 1997, Antimicrobial agents and chemotherapy.

[127]  H. Fukuda,et al.  New norfloxacin resistance gene in Pseudomonas aeruginosa PAO , 1990, Antimicrobial Agents and Chemotherapy.

[128]  X. Li,et al.  Inner membrane efflux components are responsible for beta-lactam specificity of multidrug efflux pumps in Pseudomonas aeruginosa , 1997, Journal of bacteriology.

[129]  Angela Lee,et al.  Identification and Characterization of Inhibitors of Multidrug Resistance Efflux Pumps in Pseudomonas aeruginosa: Novel Agents for Combination Therapy , 2001, Antimicrobial Agents and Chemotherapy.

[130]  P. Miller,et al.  Overlaps and parallels in the regulation of intrinsic multiple‐antibiotic resistance in Escherichia coli , 1996, Molecular microbiology.

[131]  H. Yoneyama,et al.  Localization of the Outer Membrane Subunit OprM of Resistance-Nodulation-Cell Division Family Multicomponent Efflux Pump in Pseudomonas aeruginosa* , 2000, The Journal of Biological Chemistry.