A Note on Coercivity of Lower Semicontinuous Functions and Nonsmooth Critical Point Theory

[1]  Marco Degiovanni,et al.  Deformation properties for continuous functionals and critical point theory , 1993 .

[2]  A. Ioffe,et al.  Metric critical point theory. 1. Morse regularity and homotopic stability of a minimum , 1996 .

[3]  M. Marzocchi Multiple Solutions of Quasilinear Equations Involving an Area-Type Term , 1995 .

[4]  D. J. H. Garling,et al.  GEOMETRIC FUNCTIONAL ANALYSIS AND ITS APPLICATION , 1977 .

[5]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[6]  H. Berestycki,et al.  Existence of Forced Oscillations for Some Nonlinear Differential Equations. , 1984 .

[7]  D. Goeleven A note on Palais-Smale condition in the sense of Szulkin , 1993 .

[8]  R. Holmes Geometric Functional Analysis and Its Applications , 1975 .

[9]  J. Corvellec A General Approach to the Min-Max Principle , 1997 .

[10]  M. Willem,et al.  A note on Palais-Smale condition and coercivity , 1990, Differential and Integral Equations.

[11]  H. Attouch Variational convergence for functions and operators , 1984 .

[12]  Haim Brezis,et al.  Remarks on finding critical points , 1991 .

[13]  Andrzej Szulkin,et al.  Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems , 1986 .

[14]  David G. Costa,et al.  The Palais-Smale condition versus coercivity , 1991 .

[15]  Marco Degiovanni,et al.  A critical point theory for nonsmooth functional , 1994 .

[16]  Michel Willem,et al.  Applications of local linking to critical point theory , 1995 .

[17]  E. De Giorgi,et al.  PROBLEMI DI EVOLUZIONE IN SPAZI METRICI , 1980 .

[18]  D. Preiss,et al.  A general mountain pass principle for locating and classifying critical points , 1989 .

[19]  Didier Aussel,et al.  Mean value property and subdifferential criteria for lower semicontinuous functions , 1995 .

[20]  Guy Katriel,et al.  Mountain pass theorems and global homeomorphism theorems , 1994 .