Effects of morphology on surface hydroxyl concentration: a DFT comparison of anatase–TiO2 and γ-alumina catalytic supports

Abstract A comparative investigation of surface hydroxylation states for anatase–TiO 2 and γ -alumina is crucial for a better understanding of how these materials behave as catalytic supports under working conditions. Our approach combines density functional simulations and thermodynamic analysis, to determine the types of hydroxyls existing on the (100), (101), (001), and (110) surfaces of anatase–TiO 2 , as a function of temperature and water pressure. The vibrational analysis of surface OH groups allows for the assignment of experimental infrared bands as a function of the surface orientation. A consistent and quantitative comparison with recent DFT simulations on γ -alumina highlights the different acidic–basic properties of the two supports. Finally, we suggest directions for increasing the density of basic and exchangeable hydroxyls which is governed by morphology effects.

[1]  Ferdi Schüth,et al.  Handbook of porous solids , 2002 .

[2]  J. Ramírez,et al.  Hydrodesulphurization activity and characterization of sulphided molybdenum and cobalt—molybdenum catalysts : Comparison of Alumina-, Silica-Alumina- and Titania-Supported Catalysts , 1989 .

[3]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[4]  Michio Matsumura,et al.  Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases , 2001 .

[5]  G. Ertl,et al.  Handbook of Heterogeneous Catalysis , 1997 .

[6]  P. Ugliengo,et al.  An ab initio study of terminal SiOH and bridging Si(OH)Al groups in zeolites and their interaction with carbon monoxide , 1996 .

[7]  Thomas Bredow,et al.  Theoretical investigation of water adsorption at rutile and anatase surfaces , 1995 .

[8]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[9]  Valery Shklover,et al.  Nanocrystalline titanium oxide electrodes for photovoltaic applications , 2005 .

[10]  M. Vrinat,et al.  Support effects on hydrotreating catalysts , 1991 .

[11]  P. Raybaud,et al.  Promoter Sensitive Shapes of Co(Ni)MoS Nanocatalysts in Sulfo-Reductive Conditions , 2002 .

[12]  Annabella Selloni,et al.  Structure and Energetics of Water Adsorbed at TiO2 Anatase (101) and (001) Surfaces , 1998 .

[13]  C. Morterra An infrared spectroscopic study of anatase properties. Part 6.—Surface hydration and strong Lewis acidity of pure and sulphate-doped preparations , 1988 .

[14]  G. Busca,et al.  FT-IR characterization of the surface acidity of different titanium dioxide anatase preparations , 1985 .

[15]  G. Wulff,et al.  XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen , 1901 .

[16]  Christian Minot,et al.  A theoretical investigation of water adsorption on titanium dioxide surfaces , 1994 .

[17]  A. Beltrán,et al.  Static simulation of bulk and selected surfaces of anatase TiO2 , 2001 .

[18]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[19]  L. Giordano,et al.  Partial Dissociation of Water Molecules in the (3×2) Water Monolayer Deposited on the MgO (100) Surface , 1998 .

[20]  J. V. Veen An Enquiry into the Surface Chemistry of TiO2(Anatase) , 1989 .

[21]  Effect of the environment on alpha-Al2O3 (0001) surface structures , 2000, Physical review letters.

[22]  Qinghong Zhang,et al.  Effect of hydrolysis conditions on morphology and crystallization of nanosized TiO2 powder , 2000 .

[23]  F. Maugé,et al.  Effect of Hydrogen Sulfide and Methanethiol Adsorption on Acidic Properties of Metal Oxides: An Infrared Study , 2002 .

[24]  B. Rebours,et al.  Theoretical Study of the Dehydration Process of Boehmite to γ-Alumina , 2001 .

[25]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[26]  Ramamoorthy,et al.  First-principles calculations of the energetics of stoichiometric TiO2 surfaces. , 1994, Physical review. B, Condensed matter.

[27]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[28]  G. Martra Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: relationships between surface morphology and chemical behaviour , 2000 .

[29]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[30]  R. Iftimie,et al.  Morphology and Surface Properties of Boehmite (γ-AlOOH): A Density Functional Theory Study , 2001 .

[31]  Georg Kresse,et al.  Shape and Edge Sites Modifications of MoS2 Catalytic Nanoparticles Induced by Working Conditions: A Theoretical Study , 2002 .

[32]  Y. Gao,et al.  TEM study of TiO2 nanocrystals with different particle size and shape , 2000 .