On the geometry of higher-order variational problems on Lie groups

In this paper, we describe a geometric setting for higher-order lagrangian problems on Lie groups. Using left-trivialization of the higher-order tangent bundle of a Lie group and an adaptation of the classical Skinner-Rusk formalism, we deduce an intrinsic framework for this type of dynamical systems. Interesting applications as, for instance, a geometric derivation of the higher-order Euler-Poincar\'e equations, optimal control of underactuated control systems whose configuration space is a Lie group are shown, among others, along the paper.

[1]  Mark J. Gotay,et al.  Presymplectic manifolds and the Dirac-Bergmann theory of constraints , 1978 .

[2]  M. Camarinha,et al.  Some applications of quasi-velocities in optimal control , 2011, ArXiv.

[3]  A. D. Lewis,et al.  Geometric control of mechanical systems : modeling, analysis, and design for simple mechanical control systems , 2005 .

[4]  Richard Cushman,et al.  Global Aspects of Classical Integrable Systems , 2004 .

[5]  D. D. Diego,et al.  Quasivelocities and Optimal Control for underactuated Mechanical Systems , 2010, 1003.1013.

[6]  Ray Skinner,et al.  Generalized Hamiltonian dynamics. I. Formulation on T*Q⊕TQ , 1983 .

[7]  D. D. Diego,et al.  Optimal control of underactuated mechanical systems: A geometric approach , 2009, 0912.2033.

[8]  C. Marle,et al.  "Sur une forme nouvelle des ´ equations de la M´ ecanique" , 2013 .

[9]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[10]  N. McClamroch,et al.  Optimal Attitude Control of a Rigid Body Using Geometrically Exact Computations on SO(3) , 2006, math/0601424.

[11]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[12]  Sonia Martínez,et al.  Geometric Description of Vakonomic and Nonholonomic Dynamics. Comparison of Solutions , 2002, SIAM J. Control. Optim..

[13]  Anthony M. Bloch,et al.  Geometric structure-preserving optimal control of a rigid body , 2007, 0712.4400.

[14]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[15]  Frans Cantrijn,et al.  Higher-order differential equations and higher-order lagrangian mechanics , 1986, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Manuel de León,et al.  Generalized classical mechanics and field theory , 1985 .

[18]  M. Barbero-Liñán,et al.  Skinner–Rusk unified formalism for optimal control systems and applications , 2007, 0705.2178.

[19]  K. Spindler,et al.  Optimal attitude control of a rigid body , 1996 .

[20]  Darryl D. Holm,et al.  Invariant Higher-Order Variational Problems , 2010, Communications in Mathematical Physics.

[21]  F. Silva Leite,et al.  Geometry and the Dynamic Interpolation Problem , 1991, 1991 American Control Conference.

[22]  Mark J. Gotay,et al.  Presymplectic lagrangian systems. I : the constraint algorithm and the equivalence theorem , 1979 .

[23]  François-Xavier Vialard,et al.  Invariant Higher-Order Variational Problems II , 2011, J. Nonlinear Sci..

[24]  D. Martín de Diego,et al.  Singular Lagrangian systems and variational constrained mechanics on Lie algebroids , 2007, 0706.2789.

[25]  M. Crampin,et al.  Anholonomic frames in constrained dynamics , 2009, 0909.4230.