Connecting high-performance carbon-fiber-reinforced polymer cables of suspension and cable-stayed bridges through the use of gradient materials
暂无分享,去创建一个
SummaryCarbon-fiber-reinforced polymer (CFRP) cables offer a very attractive combination of high specific strength and modulus (ratio of strength or modulus to density), outstanding fatigue performance, good corrosion resistance, and low axial thermal expansion. The high specific strength permits the design of structures with highly increased spans. The high specific modulus translates into a high relative equivalent modulus. This factor is very important in view of the deflection constraints imposed on large bridges. A relative high modulus coupled with a low mass density offer CFRP cables already an advantage for spans above 1000 m. Since 1980 EMPA has been developing CFRP cables for cable-stayed and suspension bridges that are produced as assemblies of parallel CFRP wires. The key problem facing the application of CFRP cables, and thus their widespread use in the future, is how to connect them. A new reliable anchoring scheme developed with computer-aided materials design and produced with advanced gradient materials based on ceramics and polymers is described. Early 1996 such CFRP cables with a load-carrying capacity of 12 MN (1200 metric tons) have been applied for the first time on a cable-stayed road bridge with a 124-m span. Each cable is built up from 241 CFRP wires having a diameter of 5 mm.
[1] Urs Meier,et al. Carbon Fiber-Reinforced Polymers: Modern Materials in Bridge Engineering , 1992 .
[2] Urs Meier,et al. CFRP BONDED SHEETS , 1993 .