ECsim-CYL: Energy Conserving Semi-Implicit particle in cell simulation in axially symmetric cylindrical coordinates

Abstract Based on the previously developed Energy Conserving Semi Implicit Method (ECsim) code, we present its cylindrical implementation, called ECsim-CYL, to be used for axially symmetric problems. The main motivation for the development of the cylindrical version is to greatly improve the computational speed by utilizing cylindrical symmetry. The ECsim-CYL discretizes the field equations in two-dimensional cylindrical coordinates using the finite volume method. For the particle mover, it uses a modification of ECsim’s mover for cylindrical coordinates by keeping track of all three components of velocity vectors, while only keeping radial and axial coordinates of particle positions. In this paper, we describe the details of the algorithm used in the ECsim-CYL and present a series of tests to validate the accuracy of the code including a wave spectrum in a homogeneous plasma inside a cylindrical waveguide and free expansion of a spherical plasma ball in vacuum. The ECsim-CYL retains the stability properties of ECsim and conserves the energy within machine precision, while accurately describing the plasma behavior in the test cases.

[1]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[2]  A. Gautschy,et al.  Computational methods for astrophysical fluid flow , 1998 .

[3]  Gian Luca Delzanno,et al.  CPIC: A Curvilinear Particle-in-Cell Code for Plasma–Material Interaction Studies , 2011, IEEE Transactions on Plasma Science.

[4]  M. Shashkov,et al.  Mimetic Discretizations for Maxwell's Equations , 1999 .

[5]  S. Khalil,et al.  Dispersion characteristics of plasma-filled cylindrical waveguide , 2014 .

[6]  Stefano Markidis,et al.  The energy conserving particle-in-cell method , 2011, J. Comput. Phys..

[7]  Giovanni Lapenta,et al.  DEMOCRITUS: An adaptive particle in cell (PIC) code for object-plasma interactions , 2011, J. Comput. Phys..

[8]  Diego Gonzalez-Herrero,et al.  Performance analysis and implementation details of the Energy Conserving Semi-Implicit Method code (ECsim) , 2018, Comput. Phys. Commun..

[9]  Deborah Sulsky,et al.  Mass matrix formulation of the FLIP particle-in-cell method , 1992 .

[10]  Stefano Markidis,et al.  Multi-scale simulations of plasma with iPIC3D , 2010, Math. Comput. Simul..

[11]  Giovanni Lapenta,et al.  Exactly energy conserving semi-implicit particle in cell formulation , 2016, J. Comput. Phys..

[12]  Luis Chacón,et al.  An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm , 2011, J. Comput. Phys..

[13]  R. Morse,et al.  NUMERICAL SIMULATION OF THE WEIBEL INSTABILITY IN ONE AND TWO DIMENSIONS. , 1971 .

[14]  Jeremiah Brackbill,et al.  An implicit moment electromagnetic plasma simulation in cylindrical coordinates , 1986 .

[15]  P. Ricci,et al.  A methodology for the rigorous verification of Particle-in-Cell simulations , 2017 .

[16]  Luis Chacón,et al.  Fluid preconditioning for Newton-Krylov-based, fully implicit, electrostatic particle-in-cell simulations , 2013, J. Comput. Phys..

[17]  Jeremiah Brackbill,et al.  An implicit method for electromagnetic plasma simulation in two dimensions , 1982 .

[18]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[19]  Bruce I. Cohen,et al.  Direct implicit large time-step particle simulation of plasmas , 1983 .

[20]  N. A. Krall,et al.  Principles of Plasma Physics , 1973 .

[21]  Giovanni Lapenta,et al.  Particle simulations of space weather , 2012, J. Comput. Phys..

[22]  Luis Chacón,et al.  A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions , 2016, J. Comput. Phys..

[23]  J. Brackbill,et al.  Multiple time scales , 1985 .

[24]  Dale R. Welch,et al.  Implementation of an non-iterative implicit electromagnetic field solver for dense plasma simulation , 2004, Comput. Phys. Commun..

[25]  G. Lapenta,et al.  Multiple-scale kinetic simulations with the energy conserving semi-implicit particle in cell method , 2016, 1612.08289.

[26]  R. Ringle,et al.  3DCylPIC—A 3D particle-in-cell code in cylindrical coordinates for space charge simulations of ion trap and ion transport devices , 2011 .