Improving distance based image retrieval using non-dominated sorting genetic algorithm

Image retrieval is formulated as a multiobjective optimization problem.A multiobjective genetic algorithm is hybridized with distance based search.A parameter balances exploration (genetic search) or exploitation (nearest neighbors).Extensive comparative experimentation illustrate and assess the proposed methodology. Relevance feedback has been adopted as a standard in Content Based Image Retrieval (CBIR). One major difficulty that algorithms have to face is to achieve and adequate balance between the exploitation of already known areas of interest and the exploration of the feature space to find other relevant areas. In this paper, we evaluate different ways to combine two existing relevance feedback methods that place unequal emphasis on exploration and exploitation, in the context of distance-based methods. The hybrid approach proposed has been evaluated by using three image databases of various sizes that use different descriptors. Results show that the hybrid technique performs better than any of the original methods, highlighting the benefits of combining exploitation and exploration in relevance feedback tasks.

[1]  Erkki Oja,et al.  PicSOM-self-organizing image retrieval with MPEG-7 content descriptors , 2002, IEEE Trans. Neural Networks.

[2]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[3]  E. Dougherty,et al.  Gray-scale morphological granulometric texture classification , 1994 .

[4]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[5]  Vicente P. Guerrero-Bote,et al.  Order-based Fitness Functions for Genetic Algorithms Applied to Relevance Feedback , 2003, J. Assoc. Inf. Sci. Technol..

[6]  Francesc J. Ferri,et al.  Interactive Image Retrieval Using Smoothed Nearest Neighbor Estimates , 2010, SSPR/SPR.

[7]  Raimondo Schettini,et al.  Using a Relevance Feedback Mechanism to Improve Content-Based Image Retrieval , 1999, VISUAL.

[8]  Esther de Ves,et al.  Selecting the structuring element for morphological texture classification , 2006, Pattern Analysis and Applications.

[9]  Raimondo Schettini,et al.  Content-based similarity retrieval of trademarks using relevance feedback , 2001, Pattern Recognit..

[10]  Guillermo Ayala,et al.  Spatial Size Distributions: Applications to Shape and Texture Analysis , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Francesc J. Ferri,et al.  A naive relevance feedback model for content-based image retrieval using multiple similarity measures , 2010, Pattern Recognit..

[12]  Belur V. Dasarathy,et al.  Nearest neighbor (NN) norms: NN pattern classification techniques , 1991 .

[13]  Erkki Oja,et al.  Use of Image Subset Features in Image Retrieval with Self-Organizing Maps , 2004, CIVR.

[14]  Esther de Ves,et al.  A relevance feedback CBIR algorithm based on fuzzy sets , 2008, Signal Process. Image Commun..

[15]  Rama Chellappa,et al.  Classification of textures using Gaussian Markov random fields , 1985, IEEE Trans. Acoust. Speech Signal Process..

[16]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[17]  Rabia Nuray-Turan,et al.  Automatic ranking of information retrieval systems using data fusion , 2006, Inf. Process. Manag..

[18]  Francesc J. Ferri,et al.  Distance-based relevance feedback using a hybrid interactive genetic algorithm for image retrieval , 2011, Appl. Soft Comput..

[19]  Jake K. Aggarwal,et al.  Combining structure, color and texture for image retrieval: A performance evaluation , 2002, Object recognition supported by user interaction for service robots.

[20]  Giorgio Giacinto,et al.  Nearest-prototype relevance feedback for content based image retrieval , 2004, ICPR 2004.

[21]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[22]  A. P. Dawid,et al.  Bayesian Models for Massive Multimedia Databases: a New Frontier , 2002 .

[23]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[24]  Claudio Gutierrez,et al.  Survey of graph database models , 2008, CSUR.

[25]  Nuno Vasconcelos,et al.  Learning from User Feedback in Image Retrieval Systems , 1999, NIPS.

[26]  Fabio Roli,et al.  Bayesian relevance feedback for content-based image retrieval , 2004, Pattern Recognit..

[27]  Christos Faloutsos,et al.  MindReader: Querying Databases Through Multiple Examples , 1998, VLDB.

[28]  Gerard Salton,et al.  Improving retrieval performance by relevance feedback , 1997, J. Am. Soc. Inf. Sci..

[29]  S. García,et al.  An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all Pairwise Comparisons , 2008 .

[30]  Bart Thomee,et al.  Interactive search in image retrieval: a survey , 2012, International Journal of Multimedia Information Retrieval.

[31]  Francesc J. Ferri,et al.  A hybrid multi-objective optimization algorithm for content based image retrieval , 2013, Appl. Soft Comput..

[32]  Giorgio Giacinto,et al.  Neighborhood-based feature weighting for relevance feedback in content-based retrieval , 2009, 2009 10th Workshop on Image Analysis for Multimedia Interactive Services.

[33]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[34]  Mohan M. Trivedi,et al.  Segmentation of a high-resolution urban scene using texture operators , 1984, Comput. Vis. Graph. Image Process..

[35]  Thomas S. Huang,et al.  Small sample learning during multimedia retrieval using BiasMap , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[36]  Xuelong Li,et al.  Which Components are Important for Interactive Image Searching? , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[37]  Kalyanmoy Deb,et al.  A combined genetic adaptive search (GeneAS) for engineering design , 1996 .

[38]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[39]  Francesc J. Ferri,et al.  A NSGA Based Approach for Content Based Image Retrieval , 2013, CIARP.

[40]  Ian Burns,et al.  Measuring texture classification algorithms , 1997, Pattern Recognit. Lett..

[41]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[42]  Giorgio Giacinto,et al.  A nearest-neighbor approach to relevance feedback in content based image retrieval , 2007, CIVR '07.

[43]  Thomas S. Huang,et al.  One-class SVM for learning in image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[44]  Ujjwal Maulik,et al.  GRF: A Greedy Rank Fusion Algorithm for Combining MicroRNA Target Orderings , 2013, Molecular informatics.

[45]  Antonio J. Nebro,et al.  jMetal: A Java framework for multi-objective optimization , 2011, Adv. Eng. Softw..