Random Stopping Times in Stopping Problems and Stopping Games

Three notions of random stopping times exist in the literature. We introduce two concepts of equivalence of random stopping times, motivated by optimal stopping problems and stopping games respectively. We prove that these two concepts coincide and that the three notions of random stopping times are equivalent.

[1]  Nicolas Vieille,et al.  Continuous-Time Dynkin Games with Mixed Strategies , 2002, SIAM J. Control. Optim..

[2]  Andreas E. Kyprianou,et al.  Some calculations for Israeli options , 2004, Finance Stochastics.

[3]  J. Bismut Sur un problème de dynkin , 1977 .

[4]  N. Vieille,et al.  Stopping games with randomized strategies , 2001 .

[5]  J. Neveu,et al.  Discrete Parameter Martingales , 1975 .

[6]  Somesh Jha,et al.  Randomized Stopping Times and American Option Pricing with Transaction Costs , 2001 .

[7]  E. B. Dynkin,et al.  Game variant of a problem on optimal stopping , 1969 .

[8]  Jianfeng Zhang,et al.  The Continuous Time Nonzero-Sum Dynkin Game Problem and Application in Game Options , 2008, SIAM J. Control. Optim..

[9]  Ioannis Karatzas,et al.  Backward stochastic differential equations with constraints on the gains-process , 1998 .

[10]  J. Lepeltier,et al.  Reflected BSDEs and mixed game problem , 2000 .

[11]  Y. Kifer Optimal Stopped Games , 1971 .

[12]  Rida Laraki,et al.  The Value of Zero-Sum Stopping Games in Continuous Time , 2005, SIAM J. Control. Optim..

[13]  Yuval Heller,et al.  Sequential Correlated Equilibria in Stopping Games , 2009, Oper. Res..

[14]  Eilon Solan,et al.  Two-player nonZero–sum stopping games in discrete time , 2004, math/0410173.

[15]  H. W. Kuhn,et al.  11. Extensive Games and the Problem of Information , 1953 .

[16]  M. Yasuda On a randomized strategy in Neveu's stopping problem , 1985 .

[17]  Robert J . Aumann,et al.  28. Mixed and Behavior Strategies in Infinite Extensive Games , 1964 .