Solution-processable single-material molecular emitters for organic light-emitting devices.

This tutorial review presents some recent developments in the design, synthesis and implementation of organic solution-processable molecular fluorophores for non-doped electroluminescent [corrected] devices. After a brief presentation of the basic principles of operation and main characteristics of electroluminescent devices, some examples of active emitters representative of the main classes of non-doped molecular electrofluorophores will be discussed. Emphasis is placed on the relationships between the molecular structure and the electronic properties of molecular emitters, in which high photoluminescence efficiency, synthetic accessibility and processability are combined by design with additional functions such as hole and/or electron injection and transport.

[1]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[2]  Fei Huang,et al.  Polymer Light‐Emitting Diodes with Cathodes Printed from Conducting Ag Paste , 2007 .

[3]  Hiroshi Kageyama,et al.  Charge carrier transporting molecular materials and their applications in devices. , 2007, Chemical reviews.

[4]  Junbiao Peng,et al.  Asymmetrically 9,10-disubstituted anthracenes as soluble and stable blue electroluminescent molecular glasses , 2008 .

[5]  Jiuyan Li,et al.  Dendrimers for organic light-emitting diodes , 2009 .

[6]  Arno Kraft,et al.  Electroluminescent Conjugated Polymers-Seeing Polymers in a New Light. , 1998, Angewandte Chemie.

[7]  D. Bradley,et al.  Electroluminescence and Laser Emission of Soluble Pure Red Fluorescent Molecular Glasses Based on Dithienylbenzothiadiazole , 2009 .

[8]  Jie Ru,et al.  An efficient electroluminescent (2,2′-bipyridine mono N-oxide) europium(III)β-diketonate complex , 2004 .

[9]  Yongfang Li,et al.  Binaphthyl‐Containing Green‐ and Red‐Emitting Molecules for Solution‐Processable Organic Light‐Emitting Diodes , 2008 .

[10]  A. Heeger,et al.  Visible light emission from semiconducting polymer diodes , 1991 .

[11]  Yongfang Li,et al.  Solution-processable red-emission organic materials containing triphenylamine and benzothiodiazole units: synthesis and applications in organic light-emitting diodes. , 2009, The journal of physical chemistry. B.

[12]  Ullrich Mitschke,et al.  The electroluminescence of organic materials , 2000 .

[13]  Tetsuo Tsutsui,et al.  Blue light‐emitting organic electroluminescent devices , 1990 .

[14]  G. Gigli,et al.  Bright White Organic Light‐Emitting Devices from a Single Active Molecular Material , 2005 .

[15]  Hongbin Wu,et al.  Pyrene functioned diarylfluorenes as efficient solution processable light emitting molecular glass , 2009 .

[16]  H. Tian,et al.  Novel triad luminescent compound with an electron transporting and a hole transporting moiety , 1997 .

[17]  G. Jabbour,et al.  Organic-inorganic hybrids based on pyrene functionalized octavinylsilsesquioxane cores for application in OLEDs. , 2007, Journal of the American Chemical Society.

[18]  Chihaya Adachi,et al.  Electroluminescence of 1,3,4-Oxadiazole and Triphenylamine-Containing Molecules as an Emitter in Organic Multilayer Light Emitting Diodes , 1997 .

[19]  J. Roncali,et al.  A Dithienylbenzothiadiazole Pure Red Molecular Emitter with Electron Transport and Exciton Self‐Confinement for Nondoped Organic Red‐Light‐Emitting Diodes , 2008 .

[20]  Seok-Ho Hwang,et al.  Dendritic macromolecules for organic light-emitting diodes. , 2008, Chemical Society reviews.

[21]  Wenyong Lai,et al.  Kinked Star‐Shaped Fluorene/ Triazatruxene Co‐oligomer Hybrids with Enhanced Functional Properties for High‐Performance, Solution‐Processed, Blue Organic Light‐Emitting Diodes , 2008 .

[22]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[23]  Shi Yuan Tang,et al.  A Molecular Glass for Deep‐Blue Organic Light‐Emitting Diodes Comprising a 9,9′‐Spirobifluorene Core and Peripheral Carbazole Groups , 2007 .

[24]  Gregor Schwartz,et al.  White organic light-emitting diodes with fluorescent tube efficiency , 2009, Nature.

[25]  Thuc‐Quyen Nguyen,et al.  Solution-processed small molecule-based blue light-emitting diodes using conjugated polyelectrolytes as electron injection layers , 2008 .

[26]  Hongbin Wu,et al.  Supramolecular π−π Stacking Pyrene-Functioned Fluorenes: Toward Efficient Solution-Processable Small Molecule Blue and White Organic Light Emitting Diodes , 2009 .

[27]  John Kieffer,et al.  Fluorene‐Based Oligomers for Highly Efficient and Stable Organic Blue‐Light‐Emitting Diodes , 2009 .

[28]  J. Roncali Synthetic Principles for Bandgap Control in Linear pi-Conjugated Systems. , 1997, Chemical reviews.

[29]  G. Bazan,et al.  Electroluminescence from Well-Defined Tetrahedral Oligophenylenevinylene Tetramers , 2000 .

[30]  A. Gharavi,et al.  Oligophenylenevinylenes for light‐emitting diodes , 1997 .

[31]  I. F. Perepichka,et al.  Dibenzothiophene-S,S-dioxide-fluorene co-oligomers. Stable, highly-efficient blue emitters with improved electron affinity. , 2005, Chemical communications.

[32]  Yuguang Ma,et al.  Highly-efficient solution-processed OLEDs based on new bipolar emitters. , 2010, Chemical communications.

[33]  QUAN LIU,et al.  Electrochemistry and electrogenerated chemiluminescence of dithienylbenzothiadiazole derivative. Differential reactivity of donor and acceptor groups and simulations of radical cation-anion and dication-radical anion annihilations. , 2010, Journal of the American Chemical Society.

[34]  S. Forrest,et al.  Highly efficient phosphorescent emission from organic electroluminescent devices , 1998, Nature.

[35]  J. Roncali,et al.  Proquinoid acceptors as building blocks for the design of efficient π-conjugated fluorophores with high electron affinity , 2000 .

[36]  A. Zanelli,et al.  New Branched Thiophene‐Based Oligomers for Bright Organic Light‐Emitting Devices , 2003 .

[37]  I. Samuel,et al.  The Development of Light‐Emitting Dendrimers for Displays , 2007 .

[38]  Yunqi Liu,et al.  Oligo(2,7-fluorene ethynylene)s with pyrene moieties: synthesis, characterization, photoluminescence, and electroluminescence. , 2007, The Journal of organic chemistry.

[39]  J. Kido,et al.  Solution-processable organic fluorescent dyes for multicolor emission in organic light emitting diodes , 2008 .

[40]  A. Zanelli,et al.  V‐Shaped Thiophene‐Based Oligomers with Improved Electroluminescence Properties , 2005 .

[41]  W. Chan,et al.  Trifunctional Light‐Emitting Molecules Based on Rhenium and Ruthenium Bipyridine Complexes , 1998 .

[42]  K. Klubek,et al.  Strongly Polarized and Efficient Blue Organic Light‐Emitting Diodes Using Monodisperse Glassy Nematic Oligo(fluorene)s , 2003 .

[43]  Chun Xing Li,et al.  Amorphous fluorescent organic emitters for efficient solution-processed pure red electroluminescence: synthesis, purification, morphology, solid-state photoluminescence, and device characterizations. , 2007, The Journal of organic chemistry.

[44]  Junbiao Peng,et al.  Anthracene‐Cored Dendrimer for Solution‐Processible Blue Emitter: Syntheses, Characterizations, Photoluminescence, and Electroluminescence , 2006 .

[45]  Jeffrey S. Moore,et al.  Electroluminescent diodes from a single component emitting layer of dendritic macromolecules , 1996 .

[46]  Liduo Wang,et al.  Solution processable small molecules for organic light-emitting diodes , 2010 .

[47]  Yuguang Ma,et al.  Electroluminescence from triplet metal—ligand charge-transfer excited state of transition metal complexes , 1998 .

[48]  Khai Leok Chan,et al.  Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. , 2009, Chemical reviews.