Continuous Fraïssé Conjecture
暂无分享,去创建一个
[1] C. Nash-Williams. On well-quasi-ordering infinite trees , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.
[2] Petr Hájek,et al. Metamathematics of Fuzzy Logic , 1998, Trends in Logic.
[3] Alexander Leitsch,et al. Completeness of a First-Order Temporal Logic with Time-Gaps , 1996, Theor. Comput. Sci..
[4] N. Preining. Complete Recursive Axiomatizability of Gödel Logics , 2003 .
[5] Satoko Titani,et al. Intuitionistic fuzzy logic and intuitionistic fuzzy set theory , 1984, Journal of Symbolic Logic.
[6] F. R. Drake,et al. COMBINATORIAL SET THEORY: PARTITION RELATIONS FOR CARDINALS (Studies in Logic and the Foundations of Mathematics, 106) , 1986 .
[7] M. Baaz. Infinite-valued Gödel logics with $0$-$1$-projections and relativizations , 1996 .
[8] Norbert Preining,et al. Gödel Logics and Cantor-Bendixon Analysis , 2002, LPAR.
[9] Countably Complementable,et al. LINEAR ORDERINGS , 2006 .
[10] J. Dunn,et al. Algebraic Completeness Results for Dummett's LC and Its Extensions , 1971 .
[11] Richard Mansfield,et al. Perfect subsets of definable sets of real numbers. , 1970 .
[12] C. St. J. A. Nash-Williams,et al. On better-quasi-ordering transfinite sequences , 1968, Mathematical Proceedings of the Cambridge Philosophical Society.
[13] C. St. J. A. Nash-Williams,et al. On well-quasi-ordering transfinite sequences , 1965, Mathematical Proceedings of the Cambridge Philosophical Society.
[14] Richard Laver,et al. On Fraisse's order type conjecture , 1971 .
[15] Albert Visser,et al. On the completenes principle: A study of provability in heyting's arithmetic and extensions , 1982, Ann. Math. Log..
[16] Bruno Scarpellini. Die Nichtaxiomatisierbarkeit des Unendlichwertigen Pradikatenkalkuls von Lukasiewicz , 1962, J. Symb. Log..
[17] Alfred Horn,et al. Logic with truth values in A linearly ordered heyting algebra , 1969, Journal of Symbolic Logic.
[18] C. St. J. A. Nash-Williams,et al. On well-quasi-ordering lower sets of finite trees , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.
[19] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[20] Mitio Takano,et al. Intermediate predicate logics determined by ordinals , 1990, Journal of Symbolic Logic.
[21] Michael Dummett,et al. A propositional calculus with denumerable matrix , 1959, Journal of Symbolic Logic (JSL).
[22] Ben Dushnik,et al. Concerning similarity transformations of linearly ordered sets , 1940 .