Continuous Fraïssé Conjecture

We will investigate the relation of countable closed linear orderings with respect to continuous monotone embeddability and will show that there are exactly $\aleph_1$ many equivalence classes with respect to this embeddability relation. This is an extension of Laver’s result (Laver, Ann. Math. 93(2):89–111, 1971), who considered (plain) embeddability, which yields coarser equivalence classes. Using this result we show that there are only $\aleph_0$ many different Gödel logics.

[1]  C. Nash-Williams On well-quasi-ordering infinite trees , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[3]  Alexander Leitsch,et al.  Completeness of a First-Order Temporal Logic with Time-Gaps , 1996, Theor. Comput. Sci..

[4]  N. Preining Complete Recursive Axiomatizability of Gödel Logics , 2003 .

[5]  Satoko Titani,et al.  Intuitionistic fuzzy logic and intuitionistic fuzzy set theory , 1984, Journal of Symbolic Logic.

[6]  F. R. Drake,et al.  COMBINATORIAL SET THEORY: PARTITION RELATIONS FOR CARDINALS (Studies in Logic and the Foundations of Mathematics, 106) , 1986 .

[7]  M. Baaz Infinite-valued Gödel logics with $0$-$1$-projections and relativizations , 1996 .

[8]  Norbert Preining,et al.  Gödel Logics and Cantor-Bendixon Analysis , 2002, LPAR.

[9]  Countably Complementable,et al.  LINEAR ORDERINGS , 2006 .

[10]  J. Dunn,et al.  Algebraic Completeness Results for Dummett's LC and Its Extensions , 1971 .

[11]  Richard Mansfield,et al.  Perfect subsets of definable sets of real numbers. , 1970 .

[12]  C. St. J. A. Nash-Williams,et al.  On better-quasi-ordering transfinite sequences , 1968, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  C. St. J. A. Nash-Williams,et al.  On well-quasi-ordering transfinite sequences , 1965, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  Richard Laver,et al.  On Fraisse's order type conjecture , 1971 .

[15]  Albert Visser,et al.  On the completenes principle: A study of provability in heyting's arithmetic and extensions , 1982, Ann. Math. Log..

[16]  Bruno Scarpellini Die Nichtaxiomatisierbarkeit des Unendlichwertigen Pradikatenkalkuls von Lukasiewicz , 1962, J. Symb. Log..

[17]  Alfred Horn,et al.  Logic with truth values in A linearly ordered heyting algebra , 1969, Journal of Symbolic Logic.

[18]  C. St. J. A. Nash-Williams,et al.  On well-quasi-ordering lower sets of finite trees , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  Mitio Takano,et al.  Intermediate predicate logics determined by ordinals , 1990, Journal of Symbolic Logic.

[21]  Michael Dummett,et al.  A propositional calculus with denumerable matrix , 1959, Journal of Symbolic Logic (JSL).

[22]  Ben Dushnik,et al.  Concerning similarity transformations of linearly ordered sets , 1940 .