Intelligent and Distributed Data Warehouse for Student's Academic Performance Analysis

In the academic world, a large amount of data is handled each day, ranging from student’s assessments to their socio-economic data. In order to analyze this historical information, an interesting alternative is to implement a Data Warehouse. However, Data Warehouses are not able to perform predictive analysis by themselves, so machine intelligence techniques can be used for sorting, grouping, and predicting based on historical information to improve the analysis quality. This work describes a Data Warehouse architecture to carry out an academic performance analysis of students.

[1]  Rajiv Ranjan,et al.  G-Hadoop: MapReduce across distributed data centers for data-intensive computing , 2013, Future Gener. Comput. Syst..

[2]  Ying Liu,et al.  Cluster-based outlier detection , 2009, Ann. Oper. Res..

[3]  Shamkant B. Navathe,et al.  An Efficient Algorithm for Mining Association Rules in Large Databases , 1995, VLDB.

[4]  Chung-Ming Kuan Artificial Neural Networks , 2006 .

[5]  Guoqiang Peter Zhang,et al.  Time series forecasting using a hybrid ARIMA and neural network model , 2003, Neurocomputing.

[6]  Ran Wolff,et al.  Distributed Decision-Tree Induction in Peer-to-Peer Systems , 2008 .

[7]  Srinivasan Parthasarathy,et al.  Parallel Data Mining for Association Rules on Shared-memory Systems , 1998 .

[8]  Balázs Hidasi,et al.  Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback , 2012, ECML/PKDD.

[9]  Meina Song,et al.  CMPTF: Contextual Modeling Probabilistic Tensor Factorization for recommender systems , 2016, Neurocomputing.

[10]  Ran Wolff,et al.  Distributed Decision‐Tree Induction in Peer‐to‐Peer Systems , 2008, Stat. Anal. Data Min..

[11]  Deepa Singhal,et al.  Electricity price forecasting using artificial neural networks , 2011 .

[12]  Jongwuk Lee,et al.  Improving the accuracy of top-N recommendation using a preference model , 2016, Inf. Sci..

[13]  Rosario Rogel-Salazar,et al.  Presencia de universidades en la red: la brecha digital entre Estados Unidos y el resto del mundo , 2009 .

[14]  Siddhivinayak Kulkarni,et al.  Forecasting Model for Crude Oil Price Using Artificial Neural Networks and Commodity Futures Prices , 2009, ArXiv.

[15]  Anil K. Jain,et al.  Artificial Neural Networks: A Tutorial , 1996, Computer.

[16]  H. Sivakumar,et al.  Papyrus: A System for Data Mining over Local and Wide Area Clusters and Super-Clusters , 1999, ACM/IEEE SC 1999 Conference (SC'99).

[17]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[18]  Yike Guo,et al.  An Architecture for Distributed Enterprise Data Mining , 1999, HPCN Europe.

[19]  Erkam Güresen,et al.  Developing an early warning system to predict currency crises , 2014, Eur. J. Oper. Res..

[20]  Amelec Viloria,et al.  Public policies in science and technology in latin american countries with universities in the top 100 of web ranking , 2017 .

[21]  F. Sekmen,et al.  An Early Warning System for Turkey: The Forecasting Of Economic Crisis by Using the Artificial Neural Networks , 2014 .

[22]  Abhay Kumar Agarwal,et al.  Data Storing in Intelligent and Distributed Data Warehouse using Unique Identification Number , 2017 .

[23]  Salvatore J. Stolfo,et al.  JAM: Java Agents for Meta-Learning over Distributed Databases , 1997, KDD.

[24]  Philip K. Chan,et al.  Meta-learning in distributed data mining systems: Issues and approaches , 2007 .

[25]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[26]  Neelendra Badal,et al.  A novel approach for intelligent distribution of data warehouses , 2016 .

[27]  Abdolreza Yazdani-Chamzini,et al.  Modeling Gold Price via Artificial Neural Network , 2015 .

[28]  Amelec Viloria,et al.  Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data) , 2018, DMBD.

[29]  Gianluca Bontempi,et al.  Machine Learning Strategies for Time Series Forecasting , 2012, eBISS.

[30]  Amelec Viloria,et al.  Web Visibility Profiles of Top100 Latin American Universities , 2018, DMBD.

[31]  Yannis Manolopoulos,et al.  Preference dynamics with multimodal user-item interactions in social media recommendation , 2017, Expert Syst. Appl..

[32]  David R. Butenhof Programming with POSIX threads , 1993 .

[33]  Amelec Viloria,et al.  Cluster of the Latin American Universities Top100 According to Webometrics 2017 , 2018, DMBD.