Charge Transport in Water–NaCl Electrolytes with Molecular Dynamics Simulations

A systematic description of microscopic mechanisms is necessary to understand mass transport in solid and liquid electrolytes. From Molecular Dynamics (MD) simulations, transport properties can be computed and provide a detailed view of the molecular and ionic motions. In this work, ionic conductivity and transport numbers in electrolyte systems are computed from equilibrium and nonequilibrium MD simulations. Results from the two methods are compared with experimental results, and we discuss the significance of the frame of reference when determining and comparing transport numbers. Two ways of computing ionic conductivity from equilibrium simulations are presented: the Nernst–Einstein approximation or the Onsager coefficients. The Onsager coefficients take ionic correlations into account and are found to be more suitable for concentrated electrolytes. Main features and differences between equilibrium and nonequilibrium simulations are discussed, and some potential anomalies and critical pitfalls of using nonequilibrium molecular dynamics to determine transport properties are highlighted.

[1]  B. Smit,et al.  Effects of Degrees of Freedom on Calculating Diffusion Properties in Nanoporous Materials. , 2022, Journal of chemical theory and computation.

[2]  D. Brandell,et al.  Transference Number in Polymer Electrolytes: Mind the Reference-Frame Gap , 2022, Journal of the American Chemical Society.

[3]  Steven J. Plimpton,et al.  LAMMPS - A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales , 2021, Computer Physics Communications.

[4]  B. McCloskey,et al.  Ion Correlations and Their Impact on Transport in Polymer-Based Electrolytes , 2021, Macromolecules.

[5]  Niall J. English,et al.  Influence of external static and alternating electric fields on self-diffusion of water from molecular dynamics , 2020 .

[6]  Kuan-Hsuan Shen,et al.  Effects of Ion Size and Dielectric Constant on Ion Transport and Transference Number in Polymer Electrolytes , 2020 .

[7]  Zhen‐Gang Wang,et al.  Ion transport in small-molecule and polymer electrolytes. , 2020, The Journal of chemical physics.

[8]  S. H. Jamali,et al.  Finite-size effects of diffusion coefficients computed from molecular dynamics: a review of what we have learned so far , 2020 .

[9]  K. Mandadapu,et al.  Transport phenomena in electrolyte solutions: Nonequilibrium thermodynamics and statistical mechanics , 2020, AIChE Journal.

[10]  J. Dahn,et al.  Electrolyte Design for Fast-Charging Li-Ion Batteries , 2020 .

[11]  Jonas Mindemark,et al.  Restricted Ion Transport by Plasticizing Side Chains in Polycarbonate-Based Solid Electrolytes , 2020, Macromolecules.

[12]  Kuan-Hsuan Shen,et al.  Ion Conductivity and Correlations in Model Salt-Doped Polymers: Effects of Interaction Strength and Concentration , 2020, 2001.09554.

[13]  D. Bedeaux,et al.  Non-equilibrium Thermodynamics of Heterogeneous Systems , 2008, Series on Advances in Statistical Mechanics.

[14]  Jeffrey C. Grossman,et al.  Effect of Chemical Variations in the Structure of Poly(ethylene oxide)-Based Polymers on Lithium Transport in Concentrated Electrolytes , 2019, Chemistry of Materials.

[15]  J. Šponer,et al.  Ab initio spectroscopy of water under electric fields. , 2019, Physical chemistry chemical physics : PCCP.

[16]  Brandon M. Wood,et al.  Ion Transport and the True Transference Number in Nonaqueous Polyelectrolyte Solutions for Lithium Ion Batteries , 2019, ACS central science.

[17]  J. Ryu,et al.  Prospects and challenges of the electrocaloric phenomenon in ferroelectric ceramics , 2019, Journal of Materials Chemistry C.

[18]  André Bardow,et al.  OCTP: A Tool for On-the-Fly Calculation of Transport Properties of Fluids with the Order-n Algorithm in LAMMPS , 2019, J. Chem. Inf. Model..

[19]  William A. Goddard,et al.  Atomistic Description of Ionic Diffusion in PEO–LiTFSI: Effect of Temperature, Molecular Weight, and Ionic Concentration , 2018, Macromolecules.

[20]  Boris Merinov,et al.  Molecular Dynamics Simulations of Ionic Diffusion in PEO-LiTFSI Polymer Electrolyte: Effect of Temperature, Molecular Weight, and Ionic Concentration , 2018 .

[21]  Kaoru Dokko,et al.  From Ionic Liquids to Solvate Ionic Liquids: Challenges and Opportunities for Next Generation Battery Electrolytes , 2018, Bulletin of the Chemical Society of Japan.

[22]  L. Hall,et al.  Impact of ion content and electric field on mechanical properties of coarse-grained ionomers. , 2018, The Journal of chemical physics.

[23]  G. R. Kumar,et al.  Review on Magnetocaloric Effect and Materials , 2018 .

[24]  Julien Devémy,et al.  Thermalized Drude Oscillators with the LAMMPS Molecular Dynamics Simulator , 2016, J. Chem. Inf. Model..

[25]  Yi Cui,et al.  The path towards sustainable energy. , 2016, Nature materials.

[26]  N. English,et al.  Perspectives on external electric fields in molecular simulation: progress, prospects and challenges. , 2015, Physical chemistry chemical physics : PCCP.

[27]  Christina L. Ting,et al.  Structure and Dynamics of Coarse-Grained Ionomer Melts in an External Electric Field , 2015 .

[28]  Andrey G. Cherstvy,et al.  Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. , 2014, Physical chemistry chemical physics : PCCP.

[29]  André Bardow,et al.  Diffusion Coefficients from Molecular Dynamics Simulations in Binary and Ternary Mixtures , 2013 .

[30]  Alexander D. MacKerell,et al.  Simulation study of ion pairing in concentrated aqueous salt solutions with a polarizable force field. , 2013, Faraday discussions.

[31]  J. Abascal,et al.  A flexible model for water based on TIP4P/2005. , 2011, The Journal of chemical physics.

[32]  S. O'Brien,et al.  Ionic liquids in external electric and electromagnetic fields: a molecular dynamics study , 2011 .

[33]  A. Stuchebrukhov,et al.  Accounting for electronic polarization in non-polarizable force fields. , 2011, Physical chemistry chemical physics : PCCP.

[34]  Klaus Schulten,et al.  High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD. , 2011, The journal of physical chemistry letters.

[35]  Alexander D. MacKerell,et al.  Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field. , 2010, Journal of chemical theory and computation.

[36]  Randall Q. Snurr,et al.  A new perspective on the order-n algorithm for computing correlation functions , 2009 .

[37]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[38]  C. Hardacre,et al.  Application of static charge transfer within an ionic-liquid force field and its effect on structure and dynamics. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[39]  M. Armand,et al.  Building better batteries , 2008, Nature.

[40]  Alexander D. MacKerell,et al.  A polarizable model of water for molecular dynamics simulations of biomolecules , 2006 .

[41]  G. Voth,et al.  Flexible simple point-charge water model with improved liquid-state properties. , 2006, The Journal of chemical physics.

[42]  M. Ribeiro,et al.  Molecular dynamics simulation of the polymer electrolyte poly(ethylene oxide)/LiClO(4). II. Dynamical properties. , 2005, The Journal of chemical physics.

[43]  D. Wheeler,et al.  Molecular Dynamics Simulations of Multicomponent Diffusion. 2. Nonequilibrium Method , 2004 .

[44]  Gerhard Hummer,et al.  System-Size Dependence of Diffusion Coefficients and Viscosities from Molecular Dynamics Simulations with Periodic Boundary Conditions , 2004 .

[45]  M. Shiga,et al.  Rapid estimation of elastic constants by molecular dynamics simulation under constant stress , 2004 .

[46]  Niall J. English,et al.  Hydrogen bonding and molecular mobility in liquid water in external electromagnetic fields , 2003 .

[47]  S. Weerasinghe,et al.  A Kirkwood–Buff derived force field for sodium chloride in water , 2003 .

[48]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[49]  R. Neueder,et al.  Conductivity of Sodium Chloride in Water + 1,4-Dioxane Mixtures from 5 to 35°C II. Concentrated Solution , 2000 .

[50]  M. Jhon,et al.  The effect of an external electric field on the structure of liquid water using molecular dynamics simulations , 1999 .

[51]  Marc Doyle,et al.  The importance of the lithium ion transference number in lithium/polymer cells , 1994 .

[52]  Kurt Kremer,et al.  Molecular dynamics simulation of a polymer chain in solution , 1993 .

[53]  G. Morriss,et al.  Steady-state structure and dynamics of a two-dimensional conducting fluid , 1989 .

[54]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[55]  Evans,et al.  Heat and matter transport in binary liquid mixtures. , 1986, Physical review. A, General physics.

[56]  H. Weingärtner,et al.  Transference numbers of aqueous NaCl and Na2SO4 at 25°C from EMF measurements with sodium-selective glass electrodes , 1985 .

[57]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[58]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[59]  A. Sacco,et al.  Transference numbers in concentrated sodium chloride solutions , 1979 .

[60]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[61]  L. Smits,et al.  Transport Numbers of Concentrated Sodium Chloride Solutions at 25 , 1966 .

[62]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[63]  M. Spiro Volume Correction for the Indirect Moving‐Boundary Method and the Transference Numbers of Concentrated Aqueous Sodium Chloride Solutions , 1965 .

[64]  E. R. Nightingale,et al.  PHENOMENOLOGICAL THEORY OF ION SOLVATION. EFFECTIVE RADII OF HYDRATED IONS , 1959 .

[65]  A. A. Maryott,et al.  Dielectric constant of water from 0 to 100 C , 1956 .

[66]  L. G. Longsworth,et al.  Transference Numbers by the Method of Moving Boundaries. , 1932 .