Autonomous vehicle coordination with wireless sensor and actuator networks

A coordinated team of mobile wireless sensor and actuator nodes can bring numerous benefits for various applications in the field of cooperative surveillance, mapping unknown areas, disaster management, automated highway and space exploration. This article explores the idea of mobile nodes using vehicles on wheels, augmented with wireless, sensing, and control capabilities. One of the vehicles acts as a leader, being remotely driven by the user, the others represent the followers. Each vehicle has a low-power wireless sensor node attached, featuring a 3D accelerometer and a magnetic compass. Speed and orientation are computed in real time using inertial navigation techniques. The leader periodically transmits these measures to the followers, which implement a lightweight fuzzy logic controller for imitating the leader's movement pattern. We report in detail on all development phases, covering design, simulation, controller tuning, inertial sensor evaluation, calibration, scheduling, fixed-point computation, debugging, benchmarking, field experiments, and lessons learned.

[1]  M. Caruso,et al.  A New Perspective on Magnetic Field Sensing , 1999 .

[2]  Kamran Mohseni,et al.  SensorFlock: an airborne wireless sensor network of micro-air vehicles , 2007, SenSys '07.

[3]  Pramod K. Varshney,et al.  A fuzzy modeling approach to decision fusion under uncertainty , 2000, Fuzzy Sets Syst..

[4]  Xiaoming Hu,et al.  Control of mobile platforms using a virtual vehicle approach , 2001, IEEE Trans. Autom. Control..

[5]  M. J. Caruso,et al.  Applications of magnetic sensors for low cost compass systems , 2000, IEEE 2000. Position Location and Navigation Symposium (Cat. No.00CH37062).

[6]  Paul J. M. Havinga,et al.  D-FLER - A Distributed Fuzzy Logic Engine for Rule-Based Wireless Sensor Networks , 2007, UCS.

[7]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[8]  Malcolm C. Harrison,et al.  An analysis of four uncertainty calculi , 1988, IEEE Trans. Syst. Man Cybern..

[9]  Xiaoming Hu,et al.  A control Lyapunov function approach to multiagent coordination , 2002, IEEE Trans. Robotics Autom..

[10]  Guangjun Liu,et al.  Robust Leader-follower Formation Control of Mobile Robots Based on a Second Order Kinematics Model , 2007 .

[11]  George J. Pappas,et al.  Flocking in Teams of Nonholonomic Agents , 2003 .

[12]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..

[13]  J. Hedrick,et al.  String stability of interconnected systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[14]  S. Shankar Sastry,et al.  Following the flock [formation control] , 2004, IEEE Robotics & Automation Magazine.

[15]  Maja J. Mataric,et al.  A general algorithm for robot formations using local sensing and minimal communication , 2002, IEEE Trans. Robotics Autom..

[16]  John,et al.  Strapdown Inertial Navigation Technology - 2nd Edition , 2005 .

[17]  Wolfram Burgard,et al.  Coordinated multi-robot exploration , 2005, IEEE Transactions on Robotics.

[18]  Pieter Abbeel,et al.  Learning for control from multiple demonstrations , 2008, ICML '08.

[19]  Kevin L. Moore,et al.  Formation control in mobile actuator/sensor networks , 2005, SPIE Defense + Commercial Sensing.

[20]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[21]  John Weston,et al.  Strapdown Inertial Navigation Technology, Second Edition , 2005 .

[22]  Camillo J. Taylor,et al.  A vision-based formation control framework , 2002, IEEE Trans. Robotics Autom..

[23]  D. Hayat Traffic regulation system for the future automated highway , 2002 .

[24]  J. Hedrick,et al.  String stability of interconnected systems , 1996, IEEE Trans. Autom. Control..

[25]  Yangquan Chen,et al.  MASmote - A Mobility Node for MAS-net (Mobile Actuator Sensor Networks) , 2004, ROBIO.

[26]  Rodney Teo,et al.  Decentralized overlapping control of a formation of unmanned aerial vehicles , 2004, Autom..

[27]  Robert M. Newman,et al.  Wireless Sensor Networks: The Quest for Planetary Field Sensing , 2006, Proceedings. 2006 31st IEEE Conference on Local Computer Networks.

[28]  H. Fritz,et al.  Longitudinal and lateral control of heavy duty trucks for automated vehicle following in mixed traffic: experimental results from the CHAUFFEUR project , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[29]  Tilt Sensing Using Linear Accelerometers , 2004 .

[30]  Ian F. Akyildiz,et al.  Wireless sensor and actor networks: research challenges , 2004, Ad Hoc Networks.

[31]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[32]  John Weston,et al.  Strapdown Inertial Navigation Technology , 1997 .

[33]  J. Bih Paradigm shift - an introduction to fuzzy logic , 2006, IEEE Potentials.