Theoretical study on the element distribution characteristics and the effects of oxygen in TiZrHfNb high entropy alloys

[1]  P. Liaw,et al.  Short-range ordering alters the dislocation nucleation and propagation in refractory high-entropy alloys , 2023, Materials Today.

[2]  Jinfu Li,et al.  Novel BCC Ti-Al-Nb-Zr medium-entropy alloys with ultrahigh specific strength and ductility , 2023, Journal of Alloys and Compounds.

[3]  Jiang Cao,et al.  Spatial inhomogeneity of point defect properties in refractory multi-principal element alloy with short-range order: A first-principles study , 2023, Journal of Applied Physics.

[4]  Christopher D. Woodgate,et al.  Short-range order and compositional phase stability in refractory high-entropy alloys via first-principles theory and atomistic modeling: NbMoTa, NbMoTaW, and VNbMoTaW , 2022, Physical Review Materials.

[5]  I. Beyerlein,et al.  Ideal simple shear strengths of two HfNbTaTi-based quinary refractory multi-principal element alloys , 2022, APL Materials.

[6]  E. Ma,et al.  Local chemical inhomogeneities in TiZrNb-based refractory high-entropy alloys , 2022, Journal of Materials Science & Technology.

[7]  P. Cao,et al.  The Hierarchical Energy Landscape of Screw Dislocation Motion in Refractory High-entropy Alloys , 2022, Acta Materialia.

[8]  Changlin Yang,et al.  Decreasing Zr content to improve tensile properties of non-equiatomic TiZrHfNb medium entropy alloys with transformation-induced plasticity , 2022, Materials Science and Engineering: A.

[9]  En Ma,et al.  Chemical short-range order in body-centered-cubic TiZrHfNb high-entropy alloys , 2021, Applied Physics Letters.

[10]  Yong-Wei Zhang,et al.  Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering , 2021, Nature Communications.

[11]  C. Woodward,et al.  Chemical short range order strengthening in BCC complex concentrated alloys , 2021 .

[12]  S. Ong,et al.  Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order , 2021, Nature Communications.

[13]  C. Dong,et al.  Cluster-Model-Embedded First-Principles Study on Structural Stability of Body-Centered-Cubic-Based Ti-Zr-Hf-Nb Refractory High-Entropy Alloys , 2021, Journal of Phase Equilibria and Diffusion.

[14]  T. Lookman,et al.  Anomalous dislocation core structure in shock compressed bcc high-entropy alloys , 2021 .

[15]  Bi‐Yu Tang,et al.  Correlation between mechanical properties and valence electron concentration for NbTiZrM (M = Hf, Ta, W) refractory high entropy alloys: an ab initio study , 2021, Applied Physics A.

[16]  E. Borda,et al.  A Systematic Analysis of Phase Stability in Refractory High Entropy Alloys Utilizing Linear and Non-Linear Cluster Expansion Models , 2021, SSRN Electronic Journal.

[17]  Chun-Yan Yu,et al.  Atomistic simulation of chemical short-range order in HfNbTaZr high entropy alloy based on a newly-developed interatomic potential , 2021 .

[18]  Yuan Wu,et al.  Chemical short-range ordering and its strengthening effect in refractory high-entropy alloys , 2021 .

[19]  Yuan Wu,et al.  Short-range ordering and its effects on mechanical properties of high-entropy alloys , 2021 .

[20]  Fuyang Tian,et al.  Effect of ordering on stacking fault energy of VNiFeCo high entropy alloys , 2020 .

[21]  D. Shu,et al.  Mechanical Instability and Tensile Properties of TiZrHfNbTa High Entropy Alloy at Cryogenic Temperatures , 2020, Acta Materialia.

[22]  P. Liaw,et al.  Microstructures and Properties of High‐Entropy Materials: Modeling, Simulation, and Experiments , 2020, Advanced Engineering Materials.

[23]  B. Rai,et al.  Computational property predictions of Ta–Nb–Hf–Zr high-entropy alloys , 2020, Scientific Reports.

[24]  A. Hunter,et al.  The effect of local chemical ordering on Frank-Read source activation in a refractory multi-principal element alloy , 2020 .

[25]  R. Ritchie,et al.  Ab initio modeling of the energy landscape for screw dislocations in body-centered cubic high-entropy alloys , 2019, npj Computational Materials.

[26]  Chi Chen,et al.  Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy , 2019, npj Computational Materials.

[27]  L. Vitos,et al.  Theoretical investigation of the phase stability and elastic properties of TiZrHfNb-based high entropy alloys , 2019, Materials & Design.

[28]  Vei Wang,et al.  VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code , 2019, Comput. Phys. Commun..

[29]  Dierk Raabe,et al.  Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes , 2018, Nature.

[30]  Daniel B. Miracle,et al.  Development and exploration of refractory high entropy alloys—A review , 2018, Journal of Materials Research.

[31]  Liang Wang,et al.  Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility , 2018 .

[32]  A. Smirnov,et al.  Ta-Nb-Mo-W refractory high-entropy alloys: Anomalous ordering behavior and its intriguing electronic origin , 2017, Physical Review Materials.

[33]  Shengmin Guo,et al.  Senary Refractory High-Entropy Alloy HfNbTaTiVZr , 2016, Metallurgical and Materials Transactions A.

[34]  Walter Steurer,et al.  Structural-disorder and its effect on the mechanical properties in single-phase TaNbHfZr high-entropy alloys , 2015, 1510.09047.

[35]  A. Smirnov,et al.  Atomic short-range order and incipient long-range order in high-entropy alloys , 2015 .

[36]  J. Yeh,et al.  Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys , 2013 .

[37]  Michael Widom,et al.  Hybrid Monte Carlo/Molecular Dynamics Simulation of a Refractory Metal High Entropy Alloy , 2013, Metallurgical and Materials Transactions A.

[38]  C. Woodward,et al.  Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system , 2013 .

[39]  C. Liu,et al.  Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys , 2011 .

[40]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[41]  Shou-Yi Chang,et al.  Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements , 2007 .

[42]  M. Morinaga,et al.  General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters , 2006 .

[43]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[44]  S. Ranganathan,et al.  Alloyed pleasures: Multimetallic cocktails , 2003 .

[45]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[46]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[47]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[48]  D. Nguyen-Manh,et al.  Predicting short-range order evolution in WTaCrVHf refractory high-entropy alloys , 2023, Scripta Materialia.