New Moves in Motor Control

[1]  O. Kiehn Development and functional organization of spinal locomotor circuits , 2011, Current Opinion in Neurobiology.

[2]  Marco Tripodi,et al.  Monosynaptic Rabies Virus Reveals Premotor Network Organization and Synaptic Specificity of Cholinergic Partition Cells , 2010, Neuron.

[3]  R. Levine,et al.  Role of intrinsic properties in Drosophila motoneuron recruitment during fictive crawling. , 2010, Journal of neurophysiology.

[4]  A. Manira,et al.  The role of endocannabinoid signaling in motor control. , 2010, Physiology.

[5]  J. Fetcho,et al.  Some principles of organization of spinal neurons underlying locomotion in zebrafish and their implications , 2010, Annals of the New York Academy of Sciences.

[6]  A. J. Pollack,et al.  Neural Activity in the Central Complex of the Insect Brain Is Linked to Locomotor Changes , 2010, Current Biology.

[7]  Jay Hirsh,et al.  A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila , 2010, PloS one.

[8]  A. Roberts,et al.  How Neurons Generate Behavior in A Hatchling Amphibian Tadpole: An Outline , 2010, Front. Behav. Neurosci..

[9]  Martyn Goulding,et al.  From circuits to behaviour: motor networks in vertebrates , 2010, Current Opinion in Neurobiology.

[10]  O. Kiehn,et al.  Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion , 2010, Nature Neuroscience.

[11]  S. Grillner,et al.  Measured motion: searching for simplicity in spinal locomotor networks , 2009, Current Opinion in Neurobiology.

[12]  David J. Anderson,et al.  Two Different Forms of Arousal in Drosophila Are Oppositely Regulated by the Dopamine D1 Receptor Ortholog DopR via Distinct Neural Circuits , 2009, Neuron.

[13]  Herwig Baier,et al.  Optical control of zebrafish behavior with halorhodopsin , 2009, Proceedings of the National Academy of Sciences.

[14]  Ethan K. Scott,et al.  Optogenetic dissection of a behavioral module in the vertebrate spinal cord , 2009, Nature.

[15]  H. Ishimoto,et al.  Neuronal Mechanisms of Learning and Memory Revealed by Spatial and Temporal Suppression of Neurotransmission Using Shibirets1, a Temperature-Sensitive Dynamin Mutant Gene in Drosophila Melanogaster , 2009, Front. Mol. Neurosci..

[16]  M. Goulding Circuits controlling vertebrate locomotion: moving in a new direction , 2009, Nature Reviews Neuroscience.

[17]  Stefan R. Pulver,et al.  Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. , 2009, Journal of neurophysiology.

[18]  Kristin Scott,et al.  Motor Control in a Drosophila Taste Circuit , 2009, Neuron.

[19]  Toshiaki Endo,et al.  Genetic Ablation of V2a Ipsilateral Interneurons Disrupts Left-Right Locomotor Coordination in Mammalian Spinal Cord , 2008, Neuron.

[20]  P. Garrity,et al.  An internal thermal sensor controlling temperature preference in Drosophila , 2008, Nature.

[21]  Roland Strauss,et al.  Locomotor control by the central complex in Drosophila—An analysis of the tay bridge mutant , 2008, Developmental neurobiology.

[22]  R. Strauss,et al.  Analysis of a spatial orientation memory in Drosophila , 2008, Nature.

[23]  J. Fetcho,et al.  Using imaging and genetics in zebrafish to study developing spinal circuits in vivo , 2008, Developmental neurobiology.

[24]  Cori Bargmann,et al.  GFP Reconstitution Across Synaptic Partners (GRASP) Defines Cell Contacts and Synapses in Living Nervous Systems , 2008, Neuron.

[25]  A. Manira,et al.  Endocannabinoid signaling in the spinal locomotor circuitry , 2008, Brain Research Reviews.

[26]  D. McCrea,et al.  Organization of mammalian locomotor rhythm and pattern generation , 2008, Brain Research Reviews.

[27]  Alan Roberts,et al.  Origin of excitatory drive to a spinal locomotor network , 2008, Brain Research Reviews.

[28]  Ansgar Büschges,et al.  Organizing network action for locomotion: Insights from studying insect walking , 2008, Brain Research Reviews.

[29]  Paul S. G. Stein,et al.  Motor pattern deletions and modular organization of turtle spinal cord , 2008, Brain Research Reviews.

[30]  Keith T. Sillar,et al.  Neuromodulation and developmental plasticity in the locomotor system of anuran amphibians during metamorphosis , 2008, Brain Research Reviews.

[31]  S. Higashijima,et al.  Zebrafish and motor control over the last decade , 2008, Brain Research Reviews.

[32]  Ansgar Büschges,et al.  Neuronal Substrates for State-Dependent Changes in Coordination between Motoneuron Pools during Fictive Locomotion in the Lamprey Spinal Cord , 2008, The Journal of Neuroscience.

[33]  A. J. Pollack,et al.  Multi-unit recording of antennal mechano-sensitive units in the central complex of the cockroach, Blaberus discoidalis , 2008, Journal of Comparative Physiology A.

[34]  Jessica Ausborn,et al.  Frequency Control of Motor Patterning by Negative Sensory Feedback , 2007, The Journal of Neuroscience.

[35]  J. Simmers,et al.  Locomotor rhythmogenesis in the isolated rat spinal cord: a phase‐coupled set of symmetrical flexion–extension oscillators , 2007, The Journal of physiology.

[36]  John B. Thomas,et al.  A sensory feedback circuit coordinates muscle activity in Drosophila , 2007, Molecular and Cellular Neuroscience.

[37]  Ronald L. Davis,et al.  Drosophila Homer Is Required in a Small Set of Neurons Including the Ellipsoid Body for Normal Ethanol Sensitivity and Tolerance , 2007, The Journal of Neuroscience.

[38]  D. Arendt,et al.  Molecular Architecture of Annelid Nerve Cord Supports Common Origin of Nervous System Centralization in Bilateria , 2007, Cell.

[39]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[40]  Paul S. Katz,et al.  Homologues of serotonergic central pattern generator neurons in related nudibranch molluscs with divergent behaviors , 2007, Journal of Comparative Physiology A.

[41]  J. Schmitz,et al.  Segment Specificity of Load Signal Processing Depends on Walking Direction in the Stick Insect Leg Muscle Control System , 2007, The Journal of Neuroscience.

[42]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[43]  E. Marder,et al.  Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. , 2007, Annual review of physiology.

[44]  Ansgar Büschges,et al.  Assessing sensory function in locomotor systems using neuro-mechanical simulations , 2006, Trends in Neurosciences.

[45]  U. Heberlein,et al.  Distinct Behavioral Responses to Ethanol Are Regulated by Alternate RhoGAP18B Isoforms , 2006, Cell.

[46]  Jaynie F. Yang,et al.  Spinal and Brain Control of Human Walking: Implications for Retraining of Walking , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[47]  M. Heisenberg,et al.  Distinct functions of neuronal synaptobrevin in developing and mature fly photoreceptors. , 2006, Journal of neurobiology.

[48]  G. Nagel,et al.  Light-Induced Activation of Distinct Modulatory Neurons Triggers Appetitive or Aversive Learning in Drosophila Larvae , 2006, Current Biology.

[49]  E. Callaway,et al.  Selective and Quickly Reversible Inactivation of Mammalian Neurons In Vivo Using the Drosophila Allatostatin Receptor , 2006, Neuron.

[50]  J. Blenis,et al.  Inhibition of ERK‐MAP kinase signaling by RSK during Drosophila development , 2006, The EMBO journal.

[51]  Yukiko Kimura,et al.  alx, a Zebrafish Homolog of Chx10, Marks Ipsilateral Descending Excitatory Interneurons That Participate in the Regulation of Spinal Locomotor Circuits , 2006, The Journal of Neuroscience.

[52]  E. Callaway,et al.  V1 spinal neurons regulate the speed of vertebrate locomotor outputs , 2006, Nature.

[53]  E. Bamberg,et al.  Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.

[54]  K. Pearson,et al.  Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition. , 2005, Journal of neurophysiology.

[55]  H. Reichert A tripartite organization of the urbilaterian brain: Developmental genetic evidence from Drosophila , 2005, Brain Research Bulletin.

[56]  W. O. Friesen,et al.  Neuronal control of leech behavior , 2005, Progress in Neurobiology.

[57]  H. Scholz Influence of the biogenic amine tyramine on ethanol-induced behaviors in Drosophila. , 2005, Journal of neurobiology.

[58]  Susana Q. Lima,et al.  Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons , 2005, Cell.

[59]  Cori Bargmann,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A circuit for navigation in Caenorhabditis elegans , 2005 .

[60]  A. Büschges Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. , 2005, Journal of neurophysiology.

[61]  P. Stein Neuronal control of turtle hindlimb motor rhythms , 2005, Journal of Comparative Physiology A.

[62]  Kevin L. Briggman,et al.  Optical Imaging of Neuronal Populations During Decision-Making , 2005, Science.

[63]  S. Grillner,et al.  Mechanisms of Rhythm Generation in a Spinal Locomotor Network Deprived of Crossed Connections: The Lamprey Hemicord , 2005, The Journal of Neuroscience.

[64]  J. Schmitz,et al.  Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. , 2004, Journal of neurophysiology.

[65]  T. Jessell,et al.  Genetic Identification of Spinal Interneurons that Coordinate Left-Right Locomotor Activity Necessary for Walking Movements , 2004, Neuron.

[66]  J. Rossant,et al.  Characterization of Mouse Rsk4 as an Inhibitor of Fibroblast Growth Factor-RAS-Extracellular Signal-Regulated Kinase Signaling , 2004, Molecular and Cellular Biology.

[67]  A. Büschges,et al.  Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system , 2004, The European journal of neuroscience.

[68]  S. Hooper,et al.  Crustacean Motor Pattern Generator Networks , 2004, Neurosignals.

[69]  O. Kiehn,et al.  Central Pattern Generators Deciphered by Molecular Genetics , 2004, Neuron.

[70]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[71]  S. Grillner The motor infrastructure: from ion channels to neuronal networks , 2003, Nature Reviews Neuroscience.

[72]  S. Grillner,et al.  Fast and slow locomotor burst generation in the hemispinal cord of the lamprey. , 2003, Journal of neurophysiology.

[73]  M. P. Nusbaum Regulating Peptidergic Modulation of Rhythmically Active Neural Circuits , 2003, Brain, Behavior and Evolution.

[74]  U. Heberlein,et al.  High-Resolution Analysis of Ethanol-Induced Locomotor Stimulation in Drosophila , 2002, The Journal of Neuroscience.

[75]  R. Strauss The central complex and the genetic dissection of locomotor behaviour , 2002, Current Opinion in Neurobiology.

[76]  U. Heberlein,et al.  Functional Dissection of Neuroanatomical Loci Regulating Ethanol Sensitivity in Drosophila , 2002, The Journal of Neuroscience.

[77]  E. Brustein,et al.  Development of the locomotor network in zebrafish , 2002, Progress in Neurobiology.

[78]  S. Grillner,et al.  Cellular bases of a vertebrate locomotor system–steering, intersegmental and segmental co-ordination and sensory control , 2002, Brain Research Reviews.

[79]  Michael V. Johnston,et al.  Fundamental neuroscience, 2nd edition: Edited by Duane E. Haines, PhD. 582 pp., illustrated. New York: Churchill Livingstone, 2002. $52.00. ISBN 0-443-066035. , 2002 .

[80]  T. Kitamoto Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. , 2001, Journal of neurobiology.

[81]  J. Buchanan Contributions of identifiable neurons and neuron classes to lamprey vertebrate neurobiology , 2001, Progress in Neurobiology.

[82]  Daniel Cattaert,et al.  Adaptive motor control in crayfish , 2001, Progress in Neurobiology.

[83]  U. Heberlein,et al.  Functional Ethanol Tolerance in Drosophila , 2000, Neuron.

[84]  T. Jessell Neuronal specification in the spinal cord: inductive signals and transcriptional codes , 2000, Nature Reviews Genetics.

[85]  Hustert,et al.  Typical ventilatory pattern of the intact locust is produced by the isolated CNS. , 2000, Journal of insect physiology.

[86]  J C Smith,et al.  Respiratory rhythm generation in neonatal and adult mammals: the hybrid pacemaker-network model. , 2000, Respiration physiology.

[87]  J. Bacon,et al.  Two Drosophila innexins are expressed in overlapping domains and cooperate to form gap-junction channels. , 2000, Molecular biology of the cell.

[88]  F. Clarac,et al.  Central control components of a ‘simple’ stretch reflex , 2000, Trends in Neurosciences.

[89]  Timothy W. Cacciatore,et al.  Kinematics and Modeling of Leech Crawling: Evidence for an Oscillatory Behavior Produced by Propagating Waves of Excitation , 2000, The Journal of Neuroscience.

[90]  S. Grillner,et al.  Neuronal Control of Locomotion 'From Mollusc to Man ' , 1999 .

[91]  Allen Selverston,et al.  What invertebrate circuits have taught us about the brain , 1999, Brain Research Bulletin.

[92]  M. Heisenberg,et al.  Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster , 1999, Journal of Comparative Physiology A.

[93]  Paul S. Katz,et al.  What are we talking about? Modes of neuronal communication , 1999 .

[94]  P. Katz Beyond neurotransmission : neuromodulation and its importance for information processing , 1999 .

[95]  D. Arendt,et al.  Comparison of early nerve cord development in insects and vertebrates. , 1999, Development.

[96]  A. Büschges,et al.  Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint. , 1999, Journal of neurophysiology.

[97]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[98]  A. Büschges,et al.  Sensory pathways and their modulation in the control of locomotion , 1998, Current Opinion in Neurobiology.

[99]  A. Roberts,et al.  Central Circuits Controlling Locomotion in Young Frog Tadpoles , 1998, Annals of the New York Academy of Sciences.

[100]  S. Rossignol,et al.  Pharmacological Activation and Modulation of the Central Pattern Generator for Locomotion in the Cat a , 1998, Annals of the New York Academy of Sciences.

[101]  O. Kiehn,et al.  Distribution of Central Pattern Generators for Rhythmic Motor Outputs in the Spinal Cord of Limbed Vertebrates a , 1998, Annals of the New York Academy of Sciences.

[102]  R. Stein,et al.  Identification, Localization, and Modulation of Neural Networks for Walking in the Mudpuppy (Necturus Maculatus) Spinal Cord , 1998, The Journal of Neuroscience.

[103]  U. Bässler,et al.  Pattern generation for stick insect walking movements—multisensory control of a locomotor program , 1998, Brain Research Reviews.

[104]  F. Kuenzi,et al.  Ionic currents, transmitters and models of motor pattern generators , 1997, Current Opinion in Neurobiology.

[105]  R. Murphey,et al.  Mutant molecular motors disrupt neural circuits in Drosophila. , 1997, Journal of neurobiology.

[106]  Rast,et al.  Pilocarpine-induced motor rhythms in the isolated locust suboesophageal ganglion , 1997, The Journal of experimental biology.

[107]  D. McCandless Fundamental neuroscience , 1997, Metabolic Brain Disease.

[108]  G Laurent,et al.  Local Control of Leg Movements and Motor Patterns during Grooming in Locusts , 1996, The Journal of Neuroscience.

[109]  R. Levine,et al.  Crawling motor patterns induced by pilocarpine in isolated larval nerve cords of Manduca sexta. , 1996, Journal of neurophysiology.

[110]  C. Rickert,et al.  The Embryonic Central Nervous System Lineages ofDrosophila melanogaster , 1996 .

[111]  A. Büschges,et al.  Physiological changes in central neuronal pathways contributing to the generation of a reflex reversal , 1996, Journal of Comparative Physiology A.

[112]  R. Wyman,et al.  Passover eliminates gap junctional communication between neurons of the giant fiber system in Drosophila. off. , 1996, Journal of neurobiology.

[113]  Peter A. Getting,et al.  Parametric Features of Habituation of Swim Cycle Number in the Marine MolluscTritonia diomedea , 1996, Neurobiology of Learning and Memory.

[114]  Paul S. Katz,et al.  Intrinsic neuromodulation: altering neuronal circuits from within , 1996, Trends in Neurosciences.

[115]  K. Broadie,et al.  Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects , 1995, Neuron.

[116]  J. Schmitz,et al.  Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine , 1995, The Journal of experimental biology.

[117]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[118]  S. Ryckebusch,et al.  Rhythmic patterns evoked in locust leg motor neurons by the muscarinic agonist pilocarpine. , 1993, Journal of neurophysiology.

[119]  R. Strauss,et al.  A higher control center of locomotor behavior in the Drosophila brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[120]  A. Lange,et al.  Characterization of a novel central pattern generator located in the VIIth abdominal ganglion of Locusta , 1992 .

[121]  T. Sejnowski,et al.  Distributed processing of sensory information in the leech. III. A dynamical neural network model of the local bending reflex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[122]  M Heisenberg,et al.  No-bridge of Drosophila melanogaster: portrait of a structural brain mutant of the central complex. , 1992, Journal of neurogenetics.

[123]  Ulrich Bússler Variability of femoral chordotonal organ reflexes in the locust, Locusts miaratoria , 1992 .

[124]  R. Strauss,et al.  Coordination of legs during straight walking and turning in Drosophila melanogaster , 1990, Journal of Comparative Physiology A.

[125]  S. Lockery,et al.  Distributed processing of sensory information in the leech. II. Identification of interneurons contributing to the local bending reflex , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[126]  F. Clarac,et al.  Central control of the sensory afferent terminals from a leg chordotonal organ in crayfish in vitro preparation , 1990, Neuroscience Letters.

[127]  K G Pearson,et al.  Proprioceptive input patterns elevator activity in the locust flight system. , 1988, Journal of neurophysiology.

[128]  U. Bässler Functional principles of pattern generation for walking movements of stick insect forelegs: the role of the femoral chordotonal organ afferences , 1988 .

[129]  S. Zill Selective mechanical stimulation of an identified proprioceptor in freely moving locusts: role of resistance reflexes in active posture , 1987, Brain Research.

[130]  A. Chrachri,et al.  Induction of rhythmic activity in motoneurons of crayfish thoracic ganglia by cholinergic agonists , 1987, Neuroscience Letters.

[131]  S. Grillner,et al.  Newly identified 'glutamate interneurons' and their role in locomotion in the lamprey spinal cord. , 1987, Science.

[132]  K. Sillar,et al.  Two identified afferent neurones entrain a central locomotor rhythm generator , 1986, Nature.

[133]  K. Sillar,et al.  Central input to primary afferent neurons in crayfish, Pacifastacus leniusculus, is correlated with rhythmic motor output of thoracic ganglia. , 1986, Journal of neurophysiology.

[134]  R. Wyman,et al.  Mutations altering synaptic connectivity between identified neurons in Drosophila , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[135]  P. Wallén,et al.  Fictive locomotion in the lamprey spinal cord in vitro compared with swimming in the intact and spinal animal. , 1984, The Journal of physiology.

[136]  U. Bässler,et al.  Motor Output of the Denervated Thoracic Ventral Nerve Cord in the Stick Insect Carausius Morosus , 1983 .

[137]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[138]  J. Miller,et al.  Rapid killing of single neurons by irradiation of intracellularly injected dye. , 1979, Science.

[139]  S. Rossignol,et al.  Phasic gain control of reflexes from the dorsum of the paw during spinal locomotion , 1977, Brain Research.

[140]  U. Bässler,et al.  Reversal of a reflex to a single motoneuron in the stick insect Çarausius morosus , 1976, Biological Cybernetics.

[141]  Eidmann,et al.  Lehrbuch der Entomologie , 1971, Anzeiger für Schädlingskunde und Pflanzenschutz.

[142]  Franz Huber,et al.  Die Organisation des Werbegesanges der Heuschrecke Gomphocerippus rufus L. in Abhängigkeit von zentralen und peripheren Bedingungen , 1969, Zeitschrift für vergleichende Physiologie.

[143]  Donald M. Wilson The Central Nervous Control of Flight in a Locust , 1961 .

[144]  A. Manira,et al.  Principles governing recruitment of motoneurons during swimming in zebrafish , 2011, Nature Neuroscience.

[145]  Julie H. Simpson,et al.  Mapping and manipulating neural circuits in the fly brain. , 2009, Advances in genetics.

[146]  A. Büschges,et al.  Mechanosensory Feedback in Walking: From Joint Control to Locomotor Patterns , 2007 .

[147]  S. Grillner,et al.  Microcircuits : the interface between neurons and global brain function , 2006 .

[148]  Keir G Pearson,et al.  Generating the walking gait: role of sensory feedback. , 2004, Progress in brain research.

[149]  G. N. Orlovsky,et al.  Control of locomotion in marine mollusc Clione limacina , 2004, Experimental Brain Research.

[150]  H. Pflüger The control of the rocking movements of the phasmidCarausius morosus Br. , 2004, Journal of comparative physiology.

[151]  Y. Arshavsky,et al.  Control of locomotion in marine mollusc — Clione limacina. V. Photoinactivation of efferent neurons , 2004, Experimental Brain Research.

[152]  T. Matheson,et al.  Chordotonal Organs of Insects , 1998 .

[153]  K. Pearson Common principles of motor control in vertebrates and invertebrates. , 1993, Annual review of neuroscience.

[154]  R. Harris-Warrick,et al.  Modulation of neural networks for behavior. , 1991, Annual review of neuroscience.

[155]  P A Getting,et al.  Emerging principles governing the operation of neural networks. , 1989, Annual review of neuroscience.

[156]  A. Selverston,et al.  The Crustacean stomatogastric system : a model for the study of central nervous systems , 1987 .

[157]  S. Brenner,et al.  Factors that determine connectivity in the nervous system of Caenorhabditis elegans. , 1983, Cold Spring Harbor symposia on quantitative biology.

[158]  H. Weber Lehrbuch der Entomologie , 1933 .

[159]  J. Bacon,et al.  Mutations in shaking-B prevent electrical synapse formation in the Drosophila giant fiber system , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[160]  Alan Roberts,et al.  Roles for Multifunctional and Specialized Spinal Interneurons During Motor Pattern Generation in Tadpoles, Zebrafish Larvae, and Turtles , 2010, Front. Behav. Neurosci..