Pairwise Suitable Family of Permutations and Boxicity

A family F of permutations of the vertices of a hypergraph H is called "pairwise suitable" for H if, for every pair of disjoint edges in H, there exists a permutation in F in which all the vertices in one edge precede those in the other. The cardinality of a smallest such family of permutations for H is called the "separation dimension" of H and is denoted by \pi(H). Equivalently, \pi(H) is the smallest natural number k so that the vertices of H can be embedded in R^k such that any two disjoint edges of H can be separated by a hyperplane normal to one of the axes. We show that the separation dimension of a hypergraph H is equal to the "boxicity" of the line graph of H. This connection helps us in borrowing results and techniques from the extensive literature on boxicity to study the concept of separation dimension.

[1]  N. Alon,et al.  On acyclic colorings of graphs on surfaces , 1996 .

[2]  Gwenaël Joret,et al.  Boxicity of Graphs on Surfaces , 2013, Graphs Comb..

[3]  L. Sunil Chandran,et al.  Boxicity of series-parallel graphs , 2006, Discret. Math..

[4]  Zoltán Füredi,et al.  On the dimensions of ordered sets of bounded degree , 1986 .

[5]  T. William,et al.  Surveys in Combinatorics, 1997: New Perspectives on Interval Orders and Interval Graphs , 1997 .

[6]  Wayne Goddard,et al.  Acyclic colorings of planar graphs , 1991, Discret. Math..

[7]  P. Erdos-L Lovász Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .

[8]  Stefan Felsner,et al.  The maximum number of edges in a graph of bounded dimension, with applications to ring theory , 1999, Discret. Math..

[9]  Zoltán Füredi On the Prague Dimension of Kneser Graphs , 2000 .

[10]  Carsten Thomassen,et al.  Interval representations of planar graphs , 1986, J. Comb. Theory, Ser. B.

[11]  Naveen Sivadasan,et al.  Boxicity of line graphs , 2011, Discret. Math..

[12]  Jaikumar Radhakrishnan A note on scrambling permutations , 2003, Random Struct. Algorithms.

[13]  Abhijin Adiga,et al.  Cubicity, degeneracy, and crossing number , 2014, Eur. J. Comb..

[14]  Geir Agnarsson,et al.  Extremal graphs of order dimension 4 , 2002 .

[15]  J. Spencer Minimal scrambling sets of simple orders , 1972 .

[16]  L. Sunil Chandran,et al.  Chordal Bipartite Graphs with High Boxicity , 2011, Graphs Comb..

[17]  Hal A. Kierstead On the Order Dimension of 1-Sets versus k-Sets , 1996, J. Comb. Theory, Ser. A.

[18]  L. Sunil Chandran,et al.  Boxicity of Halin graphs , 2009, Discret. Math..

[19]  Harald Niederreiter,et al.  Probability and computing: randomized algorithms and probabilistic analysis , 2006, Math. Comput..

[20]  Jan Kratochvíl A Special Planar Satisfiability Problem and a Consequence of Its NP-completeness , 1994, Discret. Appl. Math..

[21]  David R. Wood,et al.  Acyclic, Star and Oriented Colourings of Graph Subdivisions , 2005, Discret. Math. Theor. Comput. Sci..

[22]  Peter C. Fishburn,et al.  Dimensions of hypergraphs , 1992, J. Comb. Theory, Ser. B.

[23]  Ben Dushnik Concerning a certain set of arrangements , 1950 .

[24]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[25]  Naveen Sivadasan,et al.  Boxicity and treewidth , 2007, J. Comb. Theory, Ser. B.

[26]  Alexandr V. Kostochka,et al.  Note to the paper of Grünbaum on acyclic colorings , 1976, Discret. Math..

[27]  M. Yannakakis The Complexity of the Partial Order Dimension Problem , 1982 .

[28]  Abhijin Adiga,et al.  The hardness of approximating the boxicity, cubicity and threshold dimension of a graph , 2010, Discret. Appl. Math..

[29]  Anthony Traill,et al.  Assessment of speech intelligibility in five south-eastern Bantu languages: critical considerations. , 1986, The South African journal of communication disorders = Die Suid-Afrikaanse tydskrif vir Kommunikasieafwykings.

[30]  Zoltán Füredi Scrambling permutations and entropy of hypergraphs , 1996 .

[31]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[32]  Abhijin Adiga,et al.  Boxicity and Poset Dimension , 2010, SIAM J. Discret. Math..

[33]  Margaret B. Cozzens,et al.  Higher and multi-dimensional analogues of interval graphs , 1981 .

[34]  Naveen Sivadasan,et al.  On the Hadwiger's conjecture for graph products , 2007, Discret. Math..

[35]  Danupon Nanongkai,et al.  Graph Products Revisited: Tight Approximation Hardness of Induced Matching, Poset Dimension and More , 2013, SODA.

[36]  L. Sunil Chandran,et al.  Boxicity of Circular Arc Graphs , 2011, Graphs Comb..