The convergent results about approximating fuzzy random minimum risk problems

Abstract Based on mean chance theory, this paper presents a new class of two-stage fuzzy random minimum risk problem (FRMRP). In order to solve the two-stage FRMRP, we use a sequence of finitely supported primitive fuzzy random variables to approximate a continuous fuzzy random variable, which result in a finite-dimensional two-stage FRMRP. We also discuss the convergence of the approximation method, including the convergence of the objective value, optimal value and optimal solutions. To illustrate the modeling idea of this paper, we apply the proposed two-stage FRMRP to the capacitated location–allocation problem with fuzzy random demands. Finally, we integrate the approximation method, neural network (NN) and particle swarm optimization (PSO) to design a hybrid PSO algorithm to solve the two-stage capacitated location–allocation problem, and provide a numerical example with five facilities and ten customers to demonstrate the effectiveness of the algorithm.

[1]  Jinwu Gao,et al.  The Independence of Fuzzy Variables with Applications to Fuzzy Random Optimization , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[2]  Yian-Kui Liu,et al.  A Bank Hedging Decision Problem , and formulated it as a stochastic possibilistic bank hedging decision model , 2004 .

[3]  James G. Morris,et al.  Decision Problems Under Risk and Chance Constrained Programming: Dilemmas in the Transition , 1981 .

[4]  Jinwu Gao,et al.  Credibilistic Game with Fuzzy Information , 2007 .

[5]  Yian-Kui Liu,et al.  Measurability criteria for fuzzy random vectors , 2006, Fuzzy Optim. Decis. Mak..

[6]  Xiaoxia Huang,et al.  Fuzzy chance-constrained portfolio selection , 2006, Appl. Math. Comput..

[7]  Baoding Liu,et al.  Renewal Process with Fuzzy Interarrival Times and Rewards , 2003, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[8]  Ana Colubi,et al.  Simulation of random fuzzy variables: an empirical approach to statistical/probabilistic studies with fuzzy experimental data , 2002, IEEE Trans. Fuzzy Syst..

[9]  M. K. Luhandjula Fuzziness and randomness in an optimization framework , 1996, Fuzzy Sets Syst..

[10]  Yian-Kui Liu Fuzzy Programming with Recourse , 2005, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[11]  Baoding Liu Fuzzy Process, Hybrid Process and Uncertain Process , 2008 .

[12]  Baoding Liu,et al.  Theory and Practice of Uncertain Programming , 2003, Studies in Fuzziness and Soft Computing.

[13]  Yian-Kui Liu,et al.  Fuzzy Random Variables: A Scalar Expected Value Operator , 2003, Fuzzy Optim. Decis. Mak..

[14]  Anastasios N. Venetsanopoulos,et al.  Fast learning algorithms for neural networks , 1992 .

[15]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[16]  Y. Dong,et al.  An application of swarm optimization to nonlinear programming , 2005 .

[17]  Pei Wang,et al.  Fuzzy contactibility and fuzzy variables , 1982 .

[18]  Peter Kall,et al.  Stochastic Programming , 1995 .

[19]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[20]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[21]  Baoding Liu,et al.  Fuzzy random chance-constrained programming , 2001, IEEE Trans. Fuzzy Syst..

[22]  Baoding Liu,et al.  Fuzzy random dependent-chance programming , 2001, IEEE Trans. Fuzzy Syst..

[23]  Baoding Liu,et al.  Uncertainty Theory - A Branch of Mathematics for Modeling Human Uncertainty , 2011, Studies in Computational Intelligence.

[24]  Baoding Liu,et al.  A survey of credibility theory , 2006, Fuzzy Optim. Decis. Mak..

[25]  Yanchun Liang,et al.  Particle swarm optimization-based algorithms for TSP and generalized TSP , 2007, Inf. Process. Lett..

[26]  George J. Klir,et al.  On fuzzy-set interpretation of possibility theory , 1999, Fuzzy Sets Syst..

[27]  Yian-Kui Liu,et al.  Expected value of fuzzy variable and fuzzy expected value models , 2002, IEEE Trans. Fuzzy Syst..

[28]  Y.-K. Liu,et al.  Convergent results about the use of fuzzy simulation in fuzzy optimization problems , 2006, IEEE Transactions on Fuzzy Systems.

[29]  Wang Guangyuan,et al.  Linear programming with fuzzy random variable coefficients , 1993 .

[30]  Ling Wang,et al.  A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization , 2007, Appl. Math. Comput..

[31]  Jinwu Gao,et al.  Convergence Criteria and Convergence Relations for Sequences of Fuzzy Random Variables , 2005, FSKD.

[32]  Yian-Kui Liu,et al.  The Approximation Method for Two-Stage Fuzzy Random Programming With Recourse , 2007, IEEE Transactions on Fuzzy Systems.

[33]  Ah Chung Tsoi,et al.  Universal Approximation Using Feedforward Neural Networks: A Survey of Some Existing Methods, and Some New Results , 1998, Neural Networks.

[34]  Yian-Kui Liu,et al.  Fuzzy random programming with equilibrium chance constraints , 2005, Inf. Sci..

[35]  Baoding Liu,et al.  Parallel machine scheduling models with fuzzy processing times , 2004, Inf. Sci..

[36]  Yinzhen Li,et al.  The fuzzy quadratic assignment problem with penalty: New models and genetic algorithm , 2006, Appl. Math. Comput..

[37]  M. Gil,et al.  Constructive definitions of fuzzy random variables , 1997 .

[38]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[39]  Baoding Liu,et al.  Fuzzy vehicle routing model with credibility measure and its hybrid intelligent algorithm , 2006, Appl. Math. Comput..

[40]  Ling Wang,et al.  An effective co-evolutionary particle swarm optimization for constrained engineering design problems , 2007, Eng. Appl. Artif. Intell..

[41]  Volker Krätschmer,et al.  A unified approach to fuzzy random variables , 2001, Fuzzy Sets Syst..

[42]  M. K. Luhandjula,et al.  Optimisation under hybrid uncertainty , 2004, Fuzzy Sets Syst..

[43]  Zhongfeng Qin,et al.  Option Pricing Formula for Fuzzy Financial Market , 2008 .