A pressure-robust virtual element method for the Stokes problem
暂无分享,去创建一个
Ying Wang | Yinnian He | Lin Mu | Gang Wang
[1] F. Brezzi,et al. Basic principles of Virtual Element Methods , 2013 .
[2] Volker John,et al. On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..
[3] Xue-Cheng Tai,et al. A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..
[4] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[5] Junping Wang,et al. New Finite Element Methods in Computational Fluid Dynamics by H(div) Elements , 2007, SIAM J. Numer. Anal..
[6] Alexander Linke,et al. On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime , 2014 .
[7] D. A. Dunavant. High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .
[8] Gang Wang,et al. A divergence free weak virtual element method for the Stokes–Darcy problem on general meshes , 2019, Computer Methods in Applied Mechanics and Engineering.
[9] Maxim A. Olshanskii,et al. Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .
[10] Giuseppe Vacca,et al. Virtual Elements for the Navier-Stokes Problem on Polygonal Meshes , 2017, SIAM J. Numer. Anal..
[11] Y. Nie,et al. A divergence-free reconstruction of the nonconforming virtual element method for the Stokes problem , 2020 .
[12] Guido Kanschat,et al. A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..
[13] Francisco-Javier Sayas,et al. Divergence-conforming HDG methods for Stokes flows , 2014, Math. Comput..
[14] Lin Mu. Pressure Robust Weak Galerkin Finite Element Methods for Stokes Problems , 2020, SIAM J. Sci. Comput..
[15] Ming Wang,et al. Convergence Analysis of Triangular MAC Schemes for Two Dimensional Stokes Equations , 2015, J. Sci. Comput..
[16] Junping Wang,et al. A weak Galerkin finite element method for second-order elliptic problems , 2011, J. Comput. Appl. Math..
[17] Lourenço Beirão da Veiga,et al. A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..
[18] Gianmarco Manzini,et al. Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes , 2010, SIAM J. Numer. Anal..
[19] G. Vacca. An H1-conforming virtual element for Darcy and Brinkman equations , 2017 .
[20] C. Bernardi,et al. Analysis of some finite elements for the Stokes problem , 1985 .
[21] Michael S. Floater,et al. Generalized barycentric coordinates and applications * , 2015, Acta Numerica.
[22] L. Beirao da Veiga,et al. The Stokes complex for Virtual Elements in three dimensions , 2019, Mathematical Models and Methods in Applied Sciences.
[23] Per-Olof Persson,et al. A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..
[24] Christian Merdon,et al. Divergence-preserving reconstructions on polygons and a really pressure-robust virtual element method for the Stokes problem , 2020, ArXiv.
[25] Wenbin Chen,et al. Minimal degree H(curl) and H(div) conforming finite elements on polytopal meshes , 2015, Math. Comput..
[26] L. Beirao da Veiga,et al. The Stokes Complex for Virtual Elements with Application to Navier–Stokes Flows , 2018, Journal of Scientific Computing.
[27] Franco Brezzi,et al. The Hitchhiker's Guide to the Virtual Element Method , 2014 .
[28] Gianmarco Manzini,et al. Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..
[29] L. Beirao da Veiga,et al. Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.
[30] Nicolas R. Gauger,et al. On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond , 2018, The SMAI journal of computational mathematics.
[31] Richard S. Falk,et al. Stokes Complexes and the Construction of Stable Finite Elements with Pointwise Mass Conservation , 2013, SIAM J. Numer. Anal..
[32] J. Guzmán,et al. Conforming and divergence-free Stokes elements in three dimensions , 2014 .
[33] M. Fortin,et al. A stable finite element for the stokes equations , 1984 .
[34] G. Paulino,et al. PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .
[35] Long Chen,et al. A Divergence Free Weak Virtual Element Method for the Stokes Problem on Polytopal Meshes , 2018, J. Sci. Comput..
[36] Gunar Matthies,et al. Robust arbitrary order mixed finite element methods for the incompressible Stokes equations , 2014 .