A pressure-robust virtual element method for the Stokes problem

Abstract In this paper, we introduce a pressure-robust virtual element method for the Stokes problem on convex polygonal meshes . The method is based on the lowest order virtual element, in which the degrees of freedom for the velocity are simply given by the evaluations of velocity at the mesh vertices and the average values of normal velocity across the mesh edges, and the pressure is approximated by piecewise constants. In the standard virtual element scheme, an average of nodal values of test function is used in the approximation of right hand side to obtain the computability and achieve optimal approximation. However, such standard scheme involves a pressure contribution in the velocity error. To achieve the pressure-independent velocity approximation, we define an H ( div ) -conforming velocity reconstruction operator for the velocity test function and propose the modified scheme by employing it in the approximation of right-hand-side source term assembling. Compared with the standard scheme, the stiffness matrix keeps unchanged and only the approximation of the right hand side changes. The error estimates for the velocity and pressure have been proved, which imply that the velocity error is independent of pressure. Numerical experiments are shown to validate the theoretical conclusions.

[1]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[2]  Volker John,et al.  On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..

[3]  Xue-Cheng Tai,et al.  A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..

[4]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[5]  Junping Wang,et al.  New Finite Element Methods in Computational Fluid Dynamics by H(div) Elements , 2007, SIAM J. Numer. Anal..

[6]  Alexander Linke,et al.  On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime , 2014 .

[7]  D. A. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .

[8]  Gang Wang,et al.  A divergence free weak virtual element method for the Stokes–Darcy problem on general meshes , 2019, Computer Methods in Applied Mechanics and Engineering.

[9]  Maxim A. Olshanskii,et al.  Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .

[10]  Giuseppe Vacca,et al.  Virtual Elements for the Navier-Stokes Problem on Polygonal Meshes , 2017, SIAM J. Numer. Anal..

[11]  Y. Nie,et al.  A divergence-free reconstruction of the nonconforming virtual element method for the Stokes problem , 2020 .

[12]  Guido Kanschat,et al.  A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..

[13]  Francisco-Javier Sayas,et al.  Divergence-conforming HDG methods for Stokes flows , 2014, Math. Comput..

[14]  Lin Mu Pressure Robust Weak Galerkin Finite Element Methods for Stokes Problems , 2020, SIAM J. Sci. Comput..

[15]  Ming Wang,et al.  Convergence Analysis of Triangular MAC Schemes for Two Dimensional Stokes Equations , 2015, J. Sci. Comput..

[16]  Junping Wang,et al.  A weak Galerkin finite element method for second-order elliptic problems , 2011, J. Comput. Appl. Math..

[17]  Lourenço Beirão da Veiga,et al.  A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..

[18]  Gianmarco Manzini,et al.  Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes , 2010, SIAM J. Numer. Anal..

[19]  G. Vacca An H1-conforming virtual element for Darcy and Brinkman equations , 2017 .

[20]  C. Bernardi,et al.  Analysis of some finite elements for the Stokes problem , 1985 .

[21]  Michael S. Floater,et al.  Generalized barycentric coordinates and applications * , 2015, Acta Numerica.

[22]  L. Beirao da Veiga,et al.  The Stokes complex for Virtual Elements in three dimensions , 2019, Mathematical Models and Methods in Applied Sciences.

[23]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[24]  Christian Merdon,et al.  Divergence-preserving reconstructions on polygons and a really pressure-robust virtual element method for the Stokes problem , 2020, ArXiv.

[25]  Wenbin Chen,et al.  Minimal degree H(curl) and H(div) conforming finite elements on polytopal meshes , 2015, Math. Comput..

[26]  L. Beirao da Veiga,et al.  The Stokes Complex for Virtual Elements with Application to Navier–Stokes Flows , 2018, Journal of Scientific Computing.

[27]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[28]  Gianmarco Manzini,et al.  Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..

[29]  L. Beirao da Veiga,et al.  Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.

[30]  Nicolas R. Gauger,et al.  On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond , 2018, The SMAI journal of computational mathematics.

[31]  Richard S. Falk,et al.  Stokes Complexes and the Construction of Stable Finite Elements with Pointwise Mass Conservation , 2013, SIAM J. Numer. Anal..

[32]  J. Guzmán,et al.  Conforming and divergence-free Stokes elements in three dimensions , 2014 .

[33]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[34]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[35]  Long Chen,et al.  A Divergence Free Weak Virtual Element Method for the Stokes Problem on Polytopal Meshes , 2018, J. Sci. Comput..

[36]  Gunar Matthies,et al.  Robust arbitrary order mixed finite element methods for the incompressible Stokes equations , 2014 .